Computationally efficient joint species distribution modeling of big spatial data.

Ecology

Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland.

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ongoing global change and the increased interest in macroecological processes call for the analysis of spatially extensive data on species communities to understand and forecast distributional changes of biodiversity. Recently developed joint species distribution models can deal with numerous species efficiently, while explicitly accounting for spatial structure in the data. However, their applicability is generally limited to relatively small spatial data sets because of their severe computational scaling as the number of spatial locations increases. In this work, we propose a practical alleviation of this scalability constraint for joint species modeling by exploiting two spatial-statistics techniques that facilitate the analysis of large spatial data sets: Gaussian predictive process and nearest-neighbor Gaussian process. We devised an efficient Gibbs posterior sampling algorithm for Bayesian model fitting that allows us to analyze community data sets consisting of hundreds of species sampled from up to hundreds of thousands of spatial units. The performance of these methods is demonstrated using an extensive plant data set of 30,955 spatial units as a case study. We provide an implementation of the presented methods as an extension to the hierarchical modeling of species communities framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027487PMC
http://dx.doi.org/10.1002/ecy.2929DOI Listing

Publication Analysis

Top Keywords

joint species
12
spatial data
12
data sets
12
species distribution
8
species communities
8
spatial units
8
species
7
spatial
7
data
7
computationally efficient
4

Similar Publications

Thermal CO Adsorption and Activation on Copper Oxide Cluster Anions CuO ( = 3-9).

J Phys Chem A

September 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.

Understanding the active sites of copper (Cu)-based catalysts toward CO is a prerequisite for improving their rational design. The reactivity of copper oxide cluster anions CuO ( = 3-9) and bare copper cluster anions Cu toward CO has been investigated at room temperature by employing mass spectrometry combined with density functional theory (DFT) calculations. Only adsorption products are observed for the reaction of CuO with CO.

View Article and Find Full Text PDF

Therapeutic potentials of mesenchymal stem cells and their extracellular vesicles on liver diseases by modulating mitochondrial function of macrophages.

Int Immunopharmacol

September 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen

Macrophages play crucial roles in the progression of liver diseases. Increasing studies have shown that mesenchymal stem cells (MSCs) and their extracellular vesicles (MSC-EVs) could reshape the liver immune microenvironment by regulating the function and phenotype of macrophages, thereby exerting a therapeutic effect on liver diseases. Mitochondria, apart from being the central hub of energy metabolism, also finely regulate macrophage-mediated innate immune responses by modulating reactive oxygen species levels, cell polarization, and cell death.

View Article and Find Full Text PDF

New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.

View Article and Find Full Text PDF

Autotoxicity in Cucumis melo L. and its alleviation by exogenous silicon: Physiological and biochemical mechanisms.

Plant Physiol Biochem

September 2025

Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.

Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.

View Article and Find Full Text PDF

DPV UL38 stabilizes MFN2 to subvert MAVS-mediated antiviral immunity in ducks.

Vet Microbiol

September 2025

Engineering Research Center of Southwest Animal Disease Prevention and Control Technology for Ministry of Education of the People's Republic of China, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Key Laboratory of Animal Disease and Human Health

Duck plague is a highly contagious disease caused by duck plague virus (DPV) infection, leading to high morbidity (up to 100 %) and mortality rates (up to 95 %) among ducks. Mitochondria are essential organelles for virus replication. It is crucial to deepen the understanding of mitochondrial homeostasis and the interaction between mitochondrial proteins after viral infection.

View Article and Find Full Text PDF