Publications by authors named "Graeme Newell"

Measuring the status and trends of biodiversity is critical for making informed decisions about the conservation, management or restoration of species, habitats and ecosystems. Defining the reference state against which status and change are measured is essential. Typically, reference states describe historical conditions, yet historical conditions are challenging to quantify, may be difficult to falsify, and may no longer be an attainable target in a contemporary ecosystem.

View Article and Find Full Text PDF

The ongoing global change and the increased interest in macroecological processes call for the analysis of spatially extensive data on species communities to understand and forecast distributional changes of biodiversity. Recently developed joint species distribution models can deal with numerous species efficiently, while explicitly accounting for spatial structure in the data. However, their applicability is generally limited to relatively small spatial data sets because of their severe computational scaling as the number of spatial locations increases.

View Article and Find Full Text PDF

Many large-scale connectivity initiatives have been proposed around the world with the aim of maintaining or restoring connectivity to offset the impacts on biodiversity of habitat loss and fragmentation. Frequently, these are based on the requirements of a single focal species of concern, but there is growing attention to identifying connectivity requirements for multi-species assemblages. A number of methods for modelling connectivity have been developed; likewise, different approaches have been used to construct resistance surfaces, the basic input data for connectivity analyses.

View Article and Find Full Text PDF

Presence-only data present challenges for selecting thresholds to transform species distribution modeling results into binary outputs. In this article, we compare two recently published threshold selection methods (maxSSS and maxF pb) and examine the effectiveness of the threshold-based prevalence estimation approach. Six virtual species with varying prevalence were simulated within a real landscape in southeastern Australia.

View Article and Find Full Text PDF

Loss of functional connectivity following habitat loss and fragmentation could drive species declines. A comprehensive understanding of fragmentation effects on functional connectivity of an ecological assemblage requires investigation of multiple species with different mobilities, at different spatial scales, for each sex, and in different landscapes. Based on published data on mobility and ecological responses to fragmentation of 10 woodland-dependent birds, and using simulation studies, we predicted that (1) fragmentation would impede dispersal and gene flow of eight "decliners" (species that disappear from suitable patches when landscape-level tree cover falls below species-specific thresholds), but not of two "tolerant" species (whose occurrence in suitable habitat patches is independent of landscape tree cover); and that fragmentation effects would be stronger (2) in the least mobile species, (3) in the more philopatric sex, and (4) in the more fragmented region.

View Article and Find Full Text PDF

Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics. Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g.

View Article and Find Full Text PDF

Systematic conservation planning (SCP) represents a significant step toward cost-effective, transparent allocation of resources for biodiversity conservation. However, research demonstrates important consequences of uncertainties in SCP and of basing methods on simplified circumstances involving few real-world complexities. Current research often relies on single case studies with unknown forms and amounts of uncertainty as well as low statistical power for generalizing results.

View Article and Find Full Text PDF