A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

On the selection of thresholds for predicting species occurrence with presence-only data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Presence-only data present challenges for selecting thresholds to transform species distribution modeling results into binary outputs. In this article, we compare two recently published threshold selection methods (maxSSS and maxF pb) and examine the effectiveness of the threshold-based prevalence estimation approach. Six virtual species with varying prevalence were simulated within a real landscape in southeastern Australia. Presence-only models were built with DOMAIN, generalized linear model, Maxent, and Random Forest. Thresholds were selected with two methods maxSSS and maxF pb with four presence-only datasets with different ratios of the number of known presences to the number of random points (KP-RP ratio). Sensitivity, specificity, true skill statistic, and F measure were used to evaluate the performance of the results. Species prevalence was estimated as the ratio of the number of predicted presences to the total number of points in the evaluation dataset. Thresholds selected with maxF pb varied as the KP-RP ratio of the threshold selection datasets changed. Datasets with the KP-RP ratio around 1 generally produced better results than scores distant from 1. Results produced by We conclude that maxFpb had specificity too low for very common species using Random Forest and Maxent models. In contrast, maxSSS produced consistent results whichever dataset was used. The estimation of prevalence was almost always biased, and the bias was very large for DOMAIN and Random Forest predictions. We conclude that maxF pb is affected by the KP-RP ratio of the threshold selection datasets, but maxSSS is almost unaffected by this ratio. Unbiased estimations of prevalence are difficult to be determined using the threshold-based approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716501PMC
http://dx.doi.org/10.1002/ece3.1878DOI Listing

Publication Analysis

Top Keywords

kp-rp ratio
16
threshold selection
12
random forest
12
presence-only data
8
methods maxsss
8
maxsss maxf
8
thresholds selected
8
ratio threshold
8
selection datasets
8
ratio
6

Similar Publications