Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional (2D) metallic transition metal dichalcogenides (MTMDCs) have attracted tremendous interest due to their intriguing physical properties and broad application potential. However, batch production of high-quality 2D MTMDCs based on existing synthesis on 2D surfaces remains a huge challenge. Herein, a universal synthetic route for the scalable synthesis of high-quality 2D MTMDC (e.g., TaS, VS, and NbS) nanosheets using microcrystalline NaCl crystals as templates via a facile chemical vapor deposition method is reported. Obviously, this synthetic route is perfectly compatible with a facile water dissolution-filtration process for obtaining high-purity MTMDC nanosheet powders. Representatively, a thickness-uniform 1T-TaS nanosheet product can be achieved that shows unexceptionable dispersibility in ethanol, which allows its assembly onto arbitrary substrates/electrodes for high-performance energy-related applications, herein serving as a high-performance electrocatalyst for the hydrogen evolution reaction. This work sheds light on the batch production, green transfer, and energy-related application of 2D MTMDC materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b06044DOI Listing

Publication Analysis

Top Keywords

two-dimensional metallic
8
metallic transition
8
transition metal
8
nanosheet powders
8
batch production
8
synthetic route
8
scalable production
4
production two-dimensional
4
metal dichalcogenide
4
dichalcogenide nanosheet
4

Similar Publications

Reversible Manipulations of Triangular-Shaped Mirror Twin Boundary Loops in Ultrathin NiTe.

Nano Lett

September 2025

School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.

High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.

View Article and Find Full Text PDF

This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.

View Article and Find Full Text PDF

Molecular engineering of two-dimensional polyamide interphase layers for anode-free lithium metal batteries.

Nat Mater

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.

Anode-free lithium (Li) metal batteries are promising candidates for high-performance energy storage applications. Nonetheless, their translation into practical applications has been hindered by the slow kinetics and reversibility of Li plating and stripping on copper foils. Here we report a two-dimensional polyamide (2DPA)/lithiated Nafion (LN) interphase layer for anode-free Li metal batteries.

View Article and Find Full Text PDF

Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF