Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265291PMC
http://dx.doi.org/10.1038/s41433-019-0594-9DOI Listing

Publication Analysis

Top Keywords

perivascular space
4
space central
4
central retinal
4
retinal artery
4
artery potential
4
potential major
4
major cerebrospinal
4
cerebrospinal fluid
4
fluid inflow
4
inflow route
4

Similar Publications

Sleep disorders encompass a range of diseases and symptoms that disrupt individual sleep patterns, degrade sleep quality, and diminish sleep efficiency. Currently, the mechanisms governing sleep regulation and the etiology of sleep disorders remain unclear, leading to clinical treatments that are primarily symptomatic due to the absence of precise intervention methods. Recent studies suggest that glymphatic-meningeal lymphatic route is responsible for the clearance of macromolecular metabolites from the brain, thus playing a pivotal role in maintaining sleep homeostasis and circadian rhythm.

View Article and Find Full Text PDF

Unifying Vascular Injury and Neurodegeneration: A Mechanistic Continuum in Cerebral Small Vessel Disease and Dementia.

Eur J Neurosci

September 2025

Global Health Neurology Lab, Sydney, New South Wales, Australia.

Cerebral small vessel disease (CSVD) is a major yet underappreciated driver of cognitive impairment and dementia, contributing to nearly half of all cases. Emerging evidence indicates that CSVD is not merely a coexisting vascular condition but an active amplifier of neurodegeneration, operating through a self-perpetuating cascade of microvascular injury, blood-brain barrier (BBB) breakdown, and glymphatic system dysfunction. In this hypothesis-driven review, we propose the Integrated Vascular-Neurodegenerative Continuum, a mechanistic model in which vascular pathology triggers and accelerates neurodegeneration via intersecting pathways, including chronic cerebral hypoperfusion, oxidative stress, and APOE ε4-associated endothelial vulnerability.

View Article and Find Full Text PDF

The Glymphatic System and Sleep Dysfunction in Parkinson's Disease.

Sleep Med Clin

September 2025

Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Via San Pio X, 4, Tricase, Lecce 73039, Italy.

Parkinson's disease (PD) is characterized by both motor and nonmotor symptoms, including significant sleep disturbances. The glymphatic system, a brain-wide clearance mechanism active during sleep, may play a key role in PD pathology by impairing the removal of toxic proteins like α-synuclein. Dysfunctional glymphatic clearance and disrupted sleep may create a cycle that accelerates neurodegeneration.

View Article and Find Full Text PDF

Objective: In this retrospective study, authors aimed to evaluate the glymphatic function alterations associated with glioma and explore the prognostic value of these alterations by calculating the index for diffusivity along the perivascular space (ALPS index).

Methods: The authors utilized data from the publicly available University of California San Francisco Preoperative Diffuse Glioma MRI (UCSF-PDGM) dataset, which includes 501 adult patients with histopathologically confirmed diffuse glioma, per the 2021 WHO classification, who underwent preoperative MRI, initial tumor resection, and tumor genetic testing at a single medical center from 2015 to 2021.The ALPS index was calculated from diffusivity maps for noninvasive glymphatic system (GS) analysis.

View Article and Find Full Text PDF

Focused Ultrasound (FUS) is the concentration of acoustic energy into a small region to produce therapeutic bioeffects. FUS-induced blood-brain barrier opening (BBBO), a strategy to deliver drugs and genes to the brain, also enhances glymphatic drainage, the brain-specific waste clearance system. Thus, FUS BBBO is a promising strategy for addressing the accumulation of neurotoxic solutes that are characteristic of many neurodegenerative diseases.

View Article and Find Full Text PDF