98%
921
2 minutes
20
A multimodal imaging instrument has been developed that integrates scanning near-field optical microscopy with nanofocused synchrotron X-ray diffraction imaging. The instrument allows for the simultaneous nanoscale characterization of electronic/near-field optical properties of materials together with their crystallographic structure, facilitating the investigation of local structure-property relationships. The design, implementation and operating procedures of this instrument are reported. The scientific capabilities are demonstrated in a proof-of-principle study of the insulator-metal phase transition in samarium sulfide (SmS) single crystals induced by applying mechanical pressure via a scanning tip. The multimodal imaging of an in situ tip-written region shows that the near-field optical reflectivity can be correlated with the heterogeneously transformed structure of the near-surface region of the crystal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S1600577519008609 | DOI Listing |
Nano Lett
September 2025
Donostia International Physics Center (DIPC), Donostia-San Sebastián 20018, Spain.
Anisotropic van der Waals crystals have gained significant attention in nano-optics and optoelectronics due to their unconventional optical properties, including anomalous reflection, canalization, and nanofocusing. Polaritons─light coupled to matter excitations─govern these effects, with their complex wavevector encoding key parameters such as wavelength, lifetime, field confinement, and propagation direction. However, determining the complex wavevector, particularly the misalignment between its real and imaginary parts, has remained a challenge due to the complexity of the dispersion relation.
View Article and Find Full Text PDFACS Nano
September 2025
School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Superlinear photodetectors hold significant potential in intelligent optical detection systems, such as near-field imaging. However, their current realization imposes stringent requirements on photosensitive materials, thereby limiting the flexibility of the device integration for practical applications. Herein, a tunable superlinear GaO deep-ultraviolet gate-all-around (GAA) phototransistor based on a p-n heterojunction has been proposed.
View Article and Find Full Text PDFSci Adv
September 2025
Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 China.
Optical-enabled identification and interaction provide an integral link between the digital and physical realms. However, nowadays optic-encodings, predominantly reliant on light's intensity and wavelength, are hindered by environmental light interference and limited information capacity. The introduction of unusual polarization states, such as circular polarization-which is absent from ordinary surroundings-holds promise for higher-dimensional interaction.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China. Electronic address:
Phase change materials (PCMs)-integrated solar-thermal-electric generators (STEGs) have emerged as a promising platform for sustainable solar energy harvesting, yet faces critical challenges including liquid phase instability, insufficient photothermal efficiency, and limited thermoelectric output. Herein, we engineered hierarchical photonic confinement through the assembly of plasmonic CuS nanoparticles, broadband-absorbing MoS nanosheets, and porous bacterial cellulose (BC). In this tripartite architecture, BC matrix provides robust structural integrity and enhances heat transfer via its 3D interconnected nanoporous structure; MoS nanosheets enable extended photon harvesting across the ultraviolet to near-infrared spectrum; CuS nanoparticles amplify near-field optical effects through localized surface plasmon resonance.
View Article and Find Full Text PDFSci Rep
September 2025
Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
In-situ imaging of chemical reactions can provide valuable insight into nanoparticle growth and structural evolution. Hard X-ray imaging is an excellent tool for this purpose, as it combines high spatial resolution with high penetration depth, allowing for realistic reaction environments. While far-field ptychography is a well-established method at synchrotron radiation sources, its near-field analog has received less attention.
View Article and Find Full Text PDF