98%
921
2 minutes
20
In this work, a biomedical Ti-6Al-4V (TC4)/Zn composite with gradient microstructures was successfully prepared by friction stir processing (FSP). The microstructures and mechanical properties of the composite were systematically studied using scanning electron microscope (SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM), atom probe tomography (APT), and microhardness test. The results show that TC4/Zn composite can be successfully prepared, and gradient microstructures varying from coarse grain to nanocrystalline is formed from the bottom to the upper surface. During FSP, adding Zn can accelerate the growth of β phase region, and the grain size significantly increases with the increasing rotation rate. The grain combination is the main mechanism for grain growth of β phase region. The deformation mechanisms gradually change from dislocation accumulations and rearrangement to dynamic recrystallization from the bottom to the upper surface (1.5 mm-150 μm from the upper surface). The composite exhibits slightly higher microhardness compared with the matrix. This paper provides a new method to obtain a TC4/Zn composite with gradient surface microstructures for potential applications in the biomedical field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747795 | PMC |
http://dx.doi.org/10.3390/ma12172795 | DOI Listing |
J Magn Reson Imaging
September 2025
School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.
Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).
Study Type: Prospective, longitudinal.
Food Chem
September 2025
College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China. Electronic address:
Enhancing hydrophobic bioactives' bioaccessibility remains challenging in functional foods due to instability and insufficient controlled-release ability in conventional protein-polysaccharide carriers. We pioneer a new interaction model by covalently grafting corn stover cellulose nanofibers (CNF) with Zein using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), creating conjugates with gradient grafting degrees (CNF/Zein 0.5, CNF/Zein 1, and CNF/Zein 2).
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.
The high sensitivity and wide linearity are crucial for flexible tactile sensors in adapting to diverse application scenarios with high accuracy and reliability. However, conventional optimization strategies of constructing microstructures suffer from the mutual restriction between the high sensitivity and wide linearity. Herein, a novel design of localized gradient conductivity (LGC) with partly covered low-conductivity (low-σ) carbon/Polydimethylsiloxane layer on high-conductivity (high-σ) silver nanowires film upon the micro-dome structure is proposed.
View Article and Find Full Text PDFSmall
September 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China.
Thick electrode is a critical strategy to increase the energy density of lithium-ion batteries(LiBs) by maximizing the active material loading. However, their practical application is obstructed by kinetic limitations, including low charge transfer efficiency and poor mechanical stability, which severely decrease rate capability, cycling performance, and safety. This review focuses on an intensive analysis of the problems with thick electrodes in terms of ion transfer kinetics, electron transfer discontinuities, and poor mechanical stability.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.
Background: Advanced diffusion models have been introduced to improve characterization of tissue microstructure in breast cancer assessment.
Purpose: This study aimed to evaluate the diagnostic utility of monoexponential apparent diffusion coefficient (ADC), time-dependent diffusion magnetic resonance imaging (td-dMRI), and the Continuous-Time Random-Walk (CTRW) diffusion model for differentiating breast lesions and predicting Ki-67 expression levels.
Methods: Fifty-three consecutive patients with suspected breast lesions undergoing preoperative MRI were enrolled in this prospective investigation.