Parkin deficiency prevents chronic ethanol-induced hepatic lipid accumulation through β-catenin accumulation.

Cell Commun Signal

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea.

Published: August 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Alcohol abuse and alcoholism lead to alcohol liver disease such as alcoholic fatty liver. Parkin is a component of the multiprotein E3 ubiquitin ligase complex and is associated with hepatic lipid accumulation. However, the role of parkin in ethanol-induced liver disease has not been reported. Here, we tested the effect of parkin on ethanol-induced fatty liver in parkin knockout (KO) mice with chronic ethanol feeding.

Methods: Male wild type (WT) and parkin KO mice (10-12 weeks old, n = 10) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 10 days. Liver histological, biochemical, and gene-expression studies were performed.

Results: Parkin KO mice exhibited lower hepatosteatosis after ethanol consumption. Because several studies reported that β-catenin is a critical factor in ethanol metabolism and protects against alcohol-induced hepatosteatosis, we investigated whether parkin changes β-catenin accumulation in the liver of ethanol-fed mice. Our results show that β-catenin was greatly accumulated in the livers of ethanol-fed parkin KO mice compared to ethanol-fed WT mice, and that parkin binds to β-catenin and promotes its degradation it by ubiquitination. Moreover, the β-catenin inhibitor IWR-1 abrogated the attenuation of ethanol-induced hepatic lipid accumulation by parkin deficiency in the livers of parkin KO mice and parkin siRNA-transfected human hepatic cell line.

Conclusions: Parkin deficiency prevents ethanol-induced hepatic lipid accumulation through promotion of β-catenin signaling by failure of β-catenin degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704582PMC
http://dx.doi.org/10.1186/s12964-019-0424-5DOI Listing

Publication Analysis

Top Keywords

hepatic lipid
16
lipid accumulation
16
parkin mice
16
parkin
14
parkin deficiency
12
ethanol-induced hepatic
12
deficiency prevents
8
β-catenin
8
β-catenin accumulation
8
liver disease
8

Similar Publications

Formoterol, a Clinically Approved Drug, Inhibits Ferroptosis by Suppressing Lipid Peroxidation and Attenuates APAP-Induced Acute Liver Injury.

Chem Biol Interact

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China. Electronic address:

Ferroptosis is an iron-dependent form of regulated cell death characterized by lethal lipid peroxidation and implicated in various human diseases. Despite intensive research, clinically applicable ferroptosis inhibitors remain unavailable. In this study, we identify formoterol, a β-adrenergic agonist widely used to treat asthma and COPD, as a potent and selective ferroptosis inhibitor through scaffold-based screening of FDA-approved drugs.

View Article and Find Full Text PDF

A scoping review on the possible immunometabolic properties of the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid.

Am J Clin Nutr

September 2025

COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Circulating levels of 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), a metabolite derived from dietary furan fatty acids primarily found in marine food sources, have long been recognized as biomarkers for fish intake. However, elevated CMPF levels are also observed in patients with type 2 diabetes or chronic kidney disease and in healthy people associated with a reduced infection risk, suggesting potential bioactive roles in metabolism and immune function. Yet, the possible causal mechanisms behind these associations are unknown.

View Article and Find Full Text PDF

The effects of cadmium and high fructose diet on metabolic and reproductive health in female CD-1 mice.

Food Chem Toxicol

September 2025

Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC. Electronic address:

Background: Evaluation of the combined effects of endocrine-disrupting chemicals and dietary factors provides critical information for cumulative health risk assessment. Herein, we investigated the effects of cadmium (Cd) exposure and high fructose (HFr) diet on metabolic and reproductive health in female mice.

Methods: Female CD-1 mice were exposed to cadmium chloride (CdCl) (0.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF