98%
921
2 minutes
20
ZnO semiconductor oxides are versatile functional materials that are used in photoelectronics, catalysis, sensing, etc. The Zn-O surface electronic states of semiconductor oxides were formed on the ZnO surface by Zn 4s and O 2p orbital coupling with the diboron compound's B 2p orbitals. The formation of spin-coupled surface states was based on the spin-orbit interaction on the interface, which has not been reported before. This shows that the semiconductor oxide's spin surface states can be modulated by regulating surface orbital energy. The Zn-O surface electronic states were confirmed by electron spin resonance results, which may help in expanding the fundamental research on spintronics modulation and quantum transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b01955 | DOI Listing |
Adv Mater
September 2025
State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.
The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Ferroelectric tunnel junctions (FTJs) based on ferroelectric switching and quantum tunneling effects with thickness down to a few unit cells have been explored for applications of two-dimensional (2D) electronic devices in data storage and neural networks. As a key performance indicator, the enhanced tunneling electrosistance (TER) ratio provides a broader dynamic range for precise modulation of synaptic weights, improving the stability and accuracy of neural networks. Herein, we report an observation of pronounced enhancement in the TER ratio by over 4 orders of magnitude through the fabrication of large-scale heterostructures combining bismuth ferrite with two-dimensional Ruddlesden-Popper oxide BiFeO.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics and Astronomy, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States.
In this study, using a set of scanning probe microscopy techniques, we investigate the electronic properties of the domain walls in the layered ferroelectric semiconductor of the transition metal oxide dihalide family, NbOI. Although the uniaxial ferroelectricity of NbOI allows only 180° domain walls, the pristine 2D flakes, where polarization is aligned in-plane, typically exhibit a variety of as-grown domain patterns outlined by the electrically neutral and charged domain walls. The electrically biased probing tip can modify the as-grown domain structures.
View Article and Find Full Text PDFSci Prog
September 2025
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China.
To address the growing demand for temperature control precision and uniformity in wafer processing, a specialized electrostatic chuck temperature control system based on thermal control coatings is proposed, aiming to enhance thermal management robustness and homogeneity. This study employs a zoned control methodology using metal-oxide conductive coatings on silicon carbide wafer heating plates. A quadrant-based thermal control coating model was established, and finite element analysis was conducted to compare temperature distribution characteristics across three geometric configurations: sectorial, spiral, and zoned designs.
View Article and Find Full Text PDF