Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BACKGROUND To determine if histograms of ADC can be used to differentiate ventricular ependymomas, choroid plexus papillomas (CPPs), and central neurocytomas (CNCs). MATERIAL AND METHODS We retrospectively reviewed records from 185 patients from 1 January 2014 to 1 November 2018. We finally included a total of 60 patients: 36 (60.00%) had histologically confirmed ependymomas, 10 (16.67%) had CPPs, and 14 (23.33%) had CNCs, as determined by routine MRI scanning at 3.0T. The ADC histogram features were derived and then compared by Kruskal-Wallis test (they were not normally distributed). Bonferroni test was used to compare the 2 groups and then we determined the ROC. RESULTS Ependymomas had significantly higher mean, perc.01%, perc.10%, perc.50%, perc.90%, and perc.99% than CNCs. Ependymomas had significantly lower skewness than CNCs. Histogram metrics derived from mean, perc.01%, perc.10%, perc.50%, and perc.90% were significantly lower in the CNCs group than in the CPPs group. CPPs showed significantly lower skewness than CNCs. A threshold value of 86.50 for perc.50% to predict ependymomas from CNCs was estimated (AUC=0.97, sensitivity=97.20%, specificity=85.70%). Optimal diagnostic performance to predict CPPs from CNCs (AUC=0.96, sensitivity=100.00%, specificity=85.70%) was obtained when setting Perc.50%=84.00 as the threshold value. CONCLUSIONS The ADC histogram analysis may help to discriminate ependymomas, CPPs, and CNCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693364PMC
http://dx.doi.org/10.12659/MSM.915398DOI Listing

Publication Analysis

Top Keywords

cncs
9
histogram analysis
8
choroid plexus
8
adc histogram
8
perc01% perc10%
8
perc10% perc50%
8
perc50% perc90%
8
lower skewness
8
skewness cncs
8
group cpps
8

Similar Publications

Homologous nanocellulose modification: A "like cures like" strategy against coffee-ring and infiltration effects in paper-based colorimetric detection.

Anal Chim Acta

November 2025

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China. Electronic address:

Background: While paper-based colorimetric assays have seen significant progress in recent years, persistent challenges including the coffee-ring effect and infiltration effect continue to affect the color uniformity of detection results, leading to decreased sensitivity and accuracy of the detection. Recent advancements in suppressing these two effects mainly depend on chemical modification of cellulose fibers or application of specific functional coatings. However, the former's complex procedures impede large-scale implementation, while the latter's non-cellulosic additives risk unpredictable interactions with analytes or interference in colorimetric reactions.

View Article and Find Full Text PDF

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF

Leveraging topological reactivity of cellulose nanocrystals with allomorph II (CNC-II) to create temperature-sensitive systems for ibuprofen delivery.

Carbohydr Polym

November 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Cellulose nanocrystals (CNCs) have garnered attention for their renewable and reactive nature, yet CNC allomorph II (CNC-II) remains underexplored compared to the extensively studied CNC-I. This study bridges this gap by introducing a two-step carboxylamine condensation strategy to conjugate poly(ethylene glycol) (PEG) onto CNC-II via ethylenediamine, leveraging the high topochemical reactivity of CNC-II. Utilizing bicarboxylate-capped PEG as a probe, quartz crystal microbalance with energy dissipation (QCM-D) assays revealed a significant reactivity increase of 16.

View Article and Find Full Text PDF

Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.

View Article and Find Full Text PDF

Advancements in Chitosan and Cellulose Nanoparticles for Stem Cell-Based Tissue Engineering.

Stem Cell Rev Rep

September 2025

Medical Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq.

Stem cell-based tissue engineering offers transformative solutions for regenerating damaged tissues, such as bone, cartilage, and neural tissues. Chitosan and cellulose nanoparticles have emerged as promising biomaterials for enhancing stem cell delivery and scaffold performance due to their biocompatibility, biodegradability, and tunable properties. Chitosan, with its antimicrobial and bioadhesive properties, supports stem cell adhesion and differentiation in soft tissue scaffolds.

View Article and Find Full Text PDF