Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Non-communicable diseases, intended as the results of a combination of inherited, environmental and biological factors, kill 40 million people each year, equivalent to roughly 70% of all premature deaths globally. The possibility that manufactured nanoparticles (NPs) may affect cardiac performance, has led to recognize NPs-exposure not only as a major Public Health concern, but also as an occupational hazard. In volunteers, NPs-exposure is problematic to quantify. We recently found that inhaled titanium dioxide NPs, one of the most produced engineered nanomaterials, acutely increased cardiac excitability and promoted arrhythmogenesis in normotensive rats by a direct interaction with cardiac cells. We hypothesized that such scenario can be exacerbated by latent cardiovascular disorders such as hypertension.

Results: We monitored cardiac electromechanical performance in spontaneously hypertensive rats (SHRs) exposed to titanium dioxide NPs for 6 weeks using a combination of cardiac functional measurements associated with toxicological, immunological, physical and genetic assays. Longitudinal radio-telemetry ECG recordings and multiple-lead epicardial potential mapping revealed that atrial activation times significantly increased as well as proneness to arrhythmia. At the third week of nanoparticles administration, the lung and cardiac tissue encountered a maladaptive irreversible structural remodelling starting with increased pro-inflammatory cytokines levels and lipid peroxidation, resulting in upregulation of the main pro-fibrotic cardiac genes. At the end of the exposure, the majority of spontaneous arrhythmic events terminated, while cardiac hemodynamic deteriorated and a significant accumulation of fibrotic tissue occurred as compared to control untreated SHRs. Titanium dioxide nanoparticles were quantified in the heart tissue although without definite accumulation as revealed by particle-induced X-ray emission and ultrastructural analysis.

Conclusions: The co-morbidity of hypertension and inhaled nanoparticles induces irreversible hemodynamic impairment associated with cardiac structural damage potentially leading to heart failure. The time-dependence of exposure indicates a non-return point that needs to be taken into account in hypertensive subjects daily exposed to nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591966PMC
http://dx.doi.org/10.1186/s12989-019-0311-7DOI Listing

Publication Analysis

Top Keywords

titanium dioxide
16
cardiac
10
dioxide nanoparticles
8
performance spontaneously
8
spontaneously hypertensive
8
hypertensive rats
8
dioxide nps
8
nanoparticles
6
subchronic exposure
4
titanium
4

Similar Publications

Titanium dioxide nanoparticles (TiO-NPs) are used in the production of various industrial and commercial products and reported to cause neurotoxicity in Sprague Dawley rats. Fortunellin (FRN) is a potent flavonoid with diverse biological properties. This research experiment was performed to explore the protective role FRN against TiO-NPs induced brain damage.

View Article and Find Full Text PDF

The increasing use of titanium dioxide (TiO) nanoparticles (NPs) has raised concerns related to their environmental accumulation and the associated ecological risks. Understanding the key biomolecular responses of TiO₂ NP-tolerant organisms like Physarum flavicomum GD217 is essential for combating the pollution of and exposure to these NPs. In this study, we employed multi-omics approaches combined with molecular biology techniques to investigate the stress responses of GD217 to mixed-phase TiO₂ NPs (M-TiO₂ NPs).

View Article and Find Full Text PDF

Ag → NiO electron cascade-driven cocatalysts enable efficient photocatalytic ammonia-to-hydrogen conversion.

J Colloid Interface Sci

September 2025

School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China. Electronic address:

Suppressing photoinduced charge recombination represents a critical challenge in photocatalytic ammonia (NH) decomposition for hydrogen (H) production. Herein, we propose a dual-cocatalyst system comprising plasmonic silver (Ag) and nickel oxide (NiO), which synergistically construct an Ag → titanium dioxide (TiO) → NiO directional electron cascade on TiO surfaces through work-function-induced interfacial charge transfer. The optimized 3 %Ag-1 %NiO-TiO reaches a significantly photocatalytic H production rate of 2366.

View Article and Find Full Text PDF

The objective of this study was to assess how sow and litter performance and nutrient utilization were affected by dietary probiotic supplementation in gestation and lactation diets that contained high levels of canola meal. Seventy-five sows were allotted to one of three treatment diets, starting on d 80 of gestation. The experimental diets included a control diet () composed of corn and soybean meal, or a modified CTRL diet where soybean meal was substituted with 300 g/kg of canola meal, provided either with () or without () product supplementation.

View Article and Find Full Text PDF

Conventional TiO₂ nanoparticle syntheses rely on high temperatures, toxic reagents and multi-step routes that impede scalability and sustainability. Here, we deliver the first green synthesis of TiO₂ nanoparticles (TiO₂ NPs) using polysaccharide- (42 mg GE g) and phenolic-rich (78 mg GAE g) Pinus patula leaf extract. GC-MS and LC-MS fingerprinting identify terpenoids, flavonoids and phenolic glycosides acting as simultaneous reducing, capping and stabilizing agents.

View Article and Find Full Text PDF