Transport cycle of Escherichia coli lactose permease in a nonhomogeneous random walk model.

Phys Rev E

Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil.

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present Monte Carlo simulations for the transport cycle of Escherichia coli lactose permease (LacY), using as a starting point the model proposed by Kaback et al. [Nat. Rev. Mol. Cell Biol. 2, 610 (2001)NRMCBP1471-007210.1038/35085077], which is based on functional properties of mutants and x-ray structures. Kaback's model suggests the existence of six states for the whole cycle of lactose-H^{+} symport. However, the free-energy differences between these states have not yet been reported in the literature. Here, we analyzed the biochemical structure of each state and determined a range of possible values for each one of the five free-energy variations. Then, using the Metropolis algorithm in a nonhomogeneous random walk model, we tested all the possible combinations with these values to find the free-energy curve that best reproduces the dynamics of LacY. The agreement between our model predictions and the experimental data suggests that our free-energy curve is appropriate for describing the lactose-H^{+} symport. We found not only this curve, but also the time of occupancy of the permease at each conformation. In addition, we paved the way in this work to solve an open question related to this transport mechanism, which is the importance of protonation for lactose binding.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.052411DOI Listing

Publication Analysis

Top Keywords

transport cycle
8
cycle escherichia
8
escherichia coli
8
coli lactose
8
lactose permease
8
nonhomogeneous random
8
random walk
8
walk model
8
lactose-h^{+} symport
8
free-energy curve
8

Similar Publications

Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.

View Article and Find Full Text PDF

Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.

View Article and Find Full Text PDF

The role of cholesterol metabolism in antiviral immunity has been established, but if and how this cholesterol-mediated immunometabolism can be regulated by specific small molecules is of particular interest in the quest for novel antiviral therapeutics. Here, we first demonstrate that NPC1 is the key cholesterol transporter for suppressing viral replication by changing cholesterol metabolism and triggering the innate immune response via systemic analyses of all possible cholesterol transporters. We then use the Connectivity Map (CMap), a systematic methodology for identifying functional connections between genetic perturbations and drug actions, to screen NPC1 inhibitors, and found that bis-benzylisoquinoline alkaloids (BBAs) exhibit high efficacy in the inhibition of viral infections.

View Article and Find Full Text PDF

Graphene/mesoporous carbon/ZIF-derived carbon heterostructures interface-reinforced assembly for capacitive energy storage.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

We report the synthesis of three-dimensional (3D) graphene/mesoporous carbon/ZIF-derived microporous carbon (G/MC/ZDC-A) heterostructures through an interface-reinforced assembly. This hierarchical architecture synergistically integrates 2D graphene nanosheets with 0D ZDC nanoparticles a mesoporous carbon "binder", effectively mitigating the agglomeration issue while establishing continuous charge transport pathways. When configurated as symmetric supercapacitors with EMIMBF electrolyte, the obtained G/MC/ZDC-A demonstrates decent capacitive performance: a high specific capacitance (240 F g at 0.

View Article and Find Full Text PDF

In this work, confocal microscopy is employed to study the loading and fouling behavior in AAV affinity resins as well as the implications of resin reuse with several commercial chromatographic materials and feed mixtures. Resin samples are obtained from both batch and column experiments, and confocal microscopy is carried out to examine the adsorption profiles in the beads after loading, wash, elution, and CIP steps. A comparison of PSDVB-based POROS CaptureSelect (PCS) AAV resins with agarose-based AVIPure AAV9 resins revealed distinct differences in both AAV transport and resin fouling.

View Article and Find Full Text PDF