Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, the problem of adaptive practical tracking is investigated by output feedback for a class of uncertain nonlinear systems subject to nonsymmetric dead-zone input nonlinearity with parameters of dead-zone being unknown. Instead of constructing the inverse of dead-zone nonlinearity, an adaptive robust control scheme is developed by designing an output compensator including two dynamic gains based respectively on identification and non-identification mechanism. With the aid of dynamic high-gain scaling approach and Backstepping method, stability analysis of the closed-loop system is proceeded using non-separation principle, which shows that the proposed controller guarantees that all closed-loop signal is bounded while the output of system tracks a broad class of bounded reference trajectories by arbitrarily small error prescribed previously. Finally, two examples are given to illustrate our controller effective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2019.05.020DOI Listing

Publication Analysis

Top Keywords

output feedback
8
nonlinear systems
8
nonsymmetric dead-zone
8
dead-zone input
8
adaptive output
4
feedback tracking
4
tracking nonlinear
4
systems uncertain
4
uncertain nonsymmetric
4
dead-zone
4

Similar Publications

From flux analysis to self contained cellular models.

Front Syst Biol

August 2025

Systems Biotechnology, School of Engineering and Design, Technical University of Munich, Munich, Germany.

Mathematical models for cellular systems have become more and more important for understanding the complex interplay between metabolism, signalling, and gene expression.In this manuscript, starting from the well-known flux balance analysis, tools and methods are summarised and illustrated by various examples that describe the way to models with kinetics for individual reactions steps that are finally self-contained. While flux analysis requires known (measured) input fluxes, self-contained (or self-sustained) models only get information on concentrations of environmental components.

View Article and Find Full Text PDF

Background: Teacher job performance is an important factor influencing the quality of education and student learning outcomes. Effective output monitoring and review ensure teachers adhere to instructional standards. This study examines the impact of output monitoring and review on teacher job performance in secondary schools in Kasese District.

View Article and Find Full Text PDF

In many model organisms, the circadian system has been proposed to comprise multiple oscillators that interact to promote accuracy of the clock as well as intricacies of rhythmic outputs. In Neurospora crassa, the circadian transcriptional/translational loop comprising of the FRQ (Frequency) and WCC (White Collar Complex) proteins has been instrumental in explaining many attributes of the clock including entrainment and rhythms in development and gene expression; in addition, some non-circadian oscillations can be unmasked when the FRQ-WCC feedback loop is eliminated. These rhythms have often lost defining circadian characteristics and are potentially controlled by other oscillators, termed FRQ-less oscillators (FLOs) in Neurospora.

View Article and Find Full Text PDF

General event-triggered dynamic output feedback control for complex networks subject to cyber attacks.

ISA Trans

September 2025

School of Science, Yanshan University, Qinhuangdao Hebei, 066004, PR China. Electronic address:

This article concentrates on the issue of event-triggered dynamic output feedback control for Markovian jump complex dynamical networks (MJCNDs) subject to multiple cyberattacks. To alleviate the communication pressure, a new adaptive event-triggered mechanism (AETM) is proposed. This AETM incorporates a dynamically adjustable parameter and mode-dependent properties to enhance flexibility.

View Article and Find Full Text PDF

The multi-user motor imagery brain-computer interface (BCI) is a new approach that uses information from multiple users to improve decision-making and social interaction. Although researchers have shown interest in this field, the current decoding methods are limited to basic approaches like linear averaging or feature integration. They ignored accurately assessing the coupling relationship features, which results in incomplete extraction of multi-source information.

View Article and Find Full Text PDF