Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lung metastasis is one of the leading causes of death for triple-negative breast cancer (TNBC). We sought to characterize the genetic alterations underlying TNBC lung metastases by integrating whole-genome sequencing and functional screening. Furthermore, we aimed to develop a metastasis-related gene signature for TNBC patients to improve risk stratification. In this prospective observational study, we first conducted whole-genome sequencing of paired primary tumor and lung metastasis from one TNBC patient to identify potential genetic driver alterations. An in vivo gain-of-function screening using an amplified open reading frame library was then employed to screen candidate genes promoting lung metastasis. Finally, we applied Cox proportional hazard regression modeling to develop a prognostic gene signature from 14 candidate genes in TNBC. Compared to the primary tumor, copy number amplifications of chromosomes 3q and 8q were identified in the lung metastasis. We discovered an enrichment of 14 genes from chromosomes 3q and 8q in mouse lung metastases model. We further developed and validated a four-gene signature (ENY2, KCNK9, TNFRSF11B and KCNMB2) that predicts recurrence-free survival and lung metastasis in TNBC. Our data also demonstrated that upregulated expression of ENY2 could promote invasion and lung metastasis of TNBC cells both in vitro and in vivo. In conclusion, our study reveals functional genes with copy number amplifications among chromosome 3q and 8q in lung metastasis of TNBC. And we develop a functional gene signature that can effectively stratify patients into low- and high-risk subgroups of recurrence, helping frame personalized treatments for TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.32329DOI Listing

Publication Analysis

Top Keywords

lung metastasis
32
metastasis tnbc
16
whole-genome sequencing
12
gene signature
12
lung
10
tnbc
9
sequencing functional
8
functional screening
8
metastasis
8
triple-negative breast
8

Similar Publications

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

Silencing CD151 Gene in Donor Triple-Negative Breast Cancer Cells Attenuates Exosome-Driven Functions of Recipient Cells.

Exp Cell Res

September 2025

Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Sciences, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India. Electronic address:

CD151 is a tetraspanin, abnormally expressed in triple negative breast cancer (TNBC). It is a prominent component of exosomes, facilitating the secretion of proteins that promote metastasis and drug resistance. We have previously demonstrated that silencing the CD151 gene reduces metastasis in TNBC.

View Article and Find Full Text PDF

Objective: To investigate the mechanism by which C5ORF13 promotes epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) through interaction with eukaryotic translation initiation factor 6 (eIF6) and its clinical significance, and to identify the potential use of valproic acid (VPA) as an eIF6 inhibitor in HCC.

Methods: The expression of C5ORF13 in HCC and its prognostic impact were analyzed using GEPIA, UALCAN, and The HUMAN PROTEIN ATLAS databases. Lentiviral transfection technology was used to knock down or overexpress C5ORF13 and eIF6.

View Article and Find Full Text PDF

Purpose: Frailty measures are critical for predicting outcomes in metastatic spine disease (MSD) patients. This study aimed to evaluate frailty measures throughout the disease process.

Methods: This retrospective analysis measured frailty in MSD patients at multiple time points using a modified Metastatic Spinal Tumor Frailty Index (MSTFI).

View Article and Find Full Text PDF