Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide because of rapid progression and high incidence of metastasis or recurrence. Accumulating evidence shows that CD73-expressing tumor cell is implicated in development of several types of cancer. However, the role of CD73 in HCC cell has not been systematically investigated and its underlying mechanism remains elusive.

Methods: CD73 expression in HCC cell was determined by RT-PCR, Western blot, and immunohistochemistry staining. Clinical significance of CD73 was evaluated by Cox regression analysis. Cell counting kit-8 and colony formation assays were used for proliferation evaluation. Transwell assays were used for motility evaluations. Co-immunoprecipitation, cytosolic and plasma membrane fractionation separation, and ELISA were applied for evaluating membrane localization of P110β and its catalytic activity. NOD/SCID/γc(null) (NOG) mice model was used to investigate the in vivo functions of CD73.

Results: In the present study, we demonstrate that CD73 was crucial for epithelial-mesenchymal transition (EMT), progression and metastasis in HCC. CD73 expression is increased in HCC cells and correlated with aggressive clinicopathological characteristics. Clinically, CD73 is identified as an independent poor prognostic indicator for both time to recurrence and overall survival. CD73 knockdown dramatically inhibits HCC cells proliferation, migration, invasion, and EMT in vitro and hinders tumor growth and metastasis in vivo. Opposite results could be observed when CD73 is overexpressed. Mechanistically, adenosine produced by CD73 binds to adenosine A2A receptor (A2AR) and activates Rap1, which recruits P110β to the plasma membrane and triggers PIP3 production, thereby promoting AKT phosphorylation in HCC cells. Notably, a combination of anti-CD73 and anti-A2AR achieves synergistic depression effects on HCC growth and metastasis than single agent alone.

Conclusions: CD73 promotes progression and metastasis through activating PI3K/AKT signaling, indicating a novel prognostic biomarker for HCC. Our data demonstrate the importance of CD73 in HCC in addition to its immunosuppressive functions and revealed that co-targeting CD73 and A2AR strategy may be a promising novel therapeutic strategy for future HCC management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458749PMC
http://dx.doi.org/10.1186/s13045-019-0724-7DOI Listing

Publication Analysis

Top Keywords

cd73
13
progression metastasis
12
hcc cells
12
hcc
11
cd73 promotes
8
hepatocellular carcinoma
8
metastasis activating
8
activating pi3k/akt
8
pi3k/akt signaling
8
membrane localization
8

Similar Publications

In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.

View Article and Find Full Text PDF

Although traditional immunogenic cell death (ICD) inducers generate vaccines (ISV) to potentiate antiprogrammed cell death ligand 1 (anti-PDL1) antibodies therapy, their efficacy remains limited. This limitation may be attributed to the physical barrier created by extracellular matrix (ECM) and immunosuppressive metabolic barrier mediated by adenosine. Here, we report an oncolytic polymer (OP), a well-designed ε-polylysine derivative with ICD-inducing capacity, which can simultaneously facilitate the release of endogenous ECM-degrading enzyme, Cathepsin B.

View Article and Find Full Text PDF

Cancer immunotherapy represents a transformative strategy in modern oncology, utilizing the body's immune system to recognize and eliminate malignant cells with precision. Unlike traditional therapies, which often directly target the tumor, immunotherapy enhances the immune system's inherent ability to differentiate between healthy and cancerous cells. The advent of immune checkpoint inhibitors (ICIs), particularly those targeting the PD-1/PD-L1 and CTLA-4 pathways, has marked a significant breakthrough in this field.

View Article and Find Full Text PDF

Background: Particulate matter (PM) in air pollution is a major health concern. PM includes ultrafine particles (UFPs - PM, particles of ≤ 0.1μm), which can evoke lung inflammation.

View Article and Find Full Text PDF

RasGRP1 signaling is required for Vγ2+ thymocyte c-Maf expression and γδT17 lineage programming.

J Immunol

September 2025

Department of Medical Microbiology and Immunology, 6-25 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada.

The γδ TCR instructively directs both lineage specification and effector programming of developing γδ T cells. However, the way in which different TCR signal strengths and other auxiliary signals coordinate downstream of the γδ TCR to regulate γδ T-cell development remains unclear. In this study we defined the role of Ras guanyl-releasing protein 1 (RasGRP1) in the development and effector programming of γδ T cells.

View Article and Find Full Text PDF