98%
921
2 minutes
20
The objectives of this research were to quantify the impact of organic matter content, soil pH and moisture content on the dissolution rate and solubility of copper oxide nanoparticles (CuO NPs) in soil, and to develop an empirical model to predict the dissolution kinetics of CuO NPs in soil. CuO NPs were dosed into standard LUFA soils with various moisture content, pH and organic carbon content. Chemical extractions were applied to measure the CuO NP dissolution kinetics. Doubling the reactive organic carbon content in LUFA 2.1 soil increased the solubility of CuO NP 2.7-fold but did not change the dissolution rate constant. Increasing the soil pH from 5.9 to 6.8 in LUFA 2.2 soil decreased the dissolution rate constant from 0.56 mol·kg·s to 0.17 mol·kg·s without changing the solubility of CuO NP in soil. For six soils, the solubility of CuO NP correlated well with soil organic matter content ( R = 0.89) independent of soil pH. In contrast, the dissolution rate constant correlated with pH for pH < 6.3 ( R = 0.89), independent of soil organic matter content. These relationships predicted the solubility and dissolution rate constants of CuO NP in two test soils (pH 5.0 and pH 7.6). Moisture content showed negligible impact on the dissolution kinetics of CuO NPs. Our study suggests that soil pH and organic matter content affect the dissolution behavior of CuO NP in soil in a predictable manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b07243 | DOI Listing |
Environ Sci Technol
September 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Sulfidized zero-valent iron (S-ZVI) holds promise in the remediation of chlorinated hydrocarbons. However, S-ZVI is susceptible to corrosion in aquifers with elevated dissolved oxygen (DO) levels. This study demonstrates, for the first time, that a trade-off between the passivation and oxidative corrosion of aged S-ZVI can be achieved in the presence of silicate to promote its dechlorination performance on trichloroethylene.
View Article and Find Full Text PDFNano Lett
September 2025
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China.
Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.
View Article and Find Full Text PDFTurk J Pharm Sci
September 2025
University of Maryland, Department of Pharmaceutical Sciences, Baltimore, USA.
Objectives: Norvir oral powder [ritonavir (RTV)] employs polyvinylpyrrolidone/vinyl acetate as the polymer to formulate an amorphous solid dispersion. Its oral absolute bioavailability is 70% in the fasted state, and it has negative food effects. The aim of this study was to perform in vitro dissolution of Norvir powder and Wagner-Nelson deconvolution of data under fasted, moderate fat, and high fat conditions in order to elucidate the relevance of dissolution testing.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Coarsening and degradation phenomena in metals have largely focused on thermally driven processes, such as bulk and surface diffusion. However, dramatic coarsening has been reported in high-surface-area, nanometer-sized Pt-based catalysts during potential cycling in an electrolyte at room temperature─a temperature too low for the process to be explained purely by surface mobility values measured in both vacuum and electrolytes (∼10 and ∼10 cm/s, respectively). This morphological evolution must be due to a different mechanism for mass transport that is sensitive to electrochemical conditions (e.
View Article and Find Full Text PDFLangmuir
September 2025
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, China.
The impact of different surfactants on hydrate formation varies, and exploring hydrate growth characteristics is crucial for advancing the industrial application of oil and gas transportation. This study employed a microscope to investigate the hydrate formation rate and the morphology and formation process of the hydrate along the wall. It also visually demonstrated the hydrate formation process on the wall within an oil-water system and the migration patterns of different liquid phases inside the hydrate, leading to the characteristic of various wall hydrate growth modes.
View Article and Find Full Text PDF