Touted benefits of nanoparticle-based fertilizers include enhancing crop nutrition by fortifying fruits or grains with nutrient metals and reducing environmental impacts of fertilizer use. However, the properties of the nanoparticles (NPs) and application routes required to achieve these benefits are not yet established. This study examined how a Zn-phosphate shell on ZnO NPs (ZnO_Ph NPs) affected root uptake, cellular distribution, transformation, and translocation of Zn in pepper plants (), and compared the efficacy of root- to foliarly-applied NPs.
View Article and Find Full Text PDFThe foreseen increasing application of copper-based nanomaterials (Cu-NMs), replacing or complementing existing Cu-agrochemicals, may negatively impact the soil microbiome. Thus, we studied the effects on soil microbiome function and composition of nano copper oxide (nCuO) or copper hydroxide NMs in a commercial (Kocide®3000) or a lab-synthetized formulation (nCu(OH)) or bulk copper hydroxide (Cu(OH)-B), at the commonly recommended Cu dose of 50 mg(Cu)kg soil. Microbial responses were studied over 28 days in a designed indoor mesocosm.
View Article and Find Full Text PDFHere, isotopically labeled ZnO NPs (ZnO NPs) and ZnO NPs with a thin Zn(PO) shell (ZnO_Ph NPs) were foliarly applied (40 μg Zn) to pepper plants () to determine the effect of surface chemistry of ZnO NPs on the Zn uptake and systemic translocation to plant organs over 6 weeks. Despite similar dissolution of both Zn-based NPs after 3 weeks, the Zn(PO) shell on ZnO_Ph NPs (48 ± 12 nm; -18.1 ± 0.
View Article and Find Full Text PDFThe work describes the combination of granulated biomass fly ash (G) with Fenton process to enhance the removal of adsorbable organic halides (AOX) from pulp bleaching wastewater. At optimal operating conditions, wastewater's chemical and biochemical oxygen demand (COD and BOD, respectively) and colour were also quantified, and operating cost of treatment assessed. For the first time, raw pulp bleaching wastewater was used to granulate BFA, instead of water, reducing the water footprint of the treatment.
View Article and Find Full Text PDFThere is a growing need to recover degraded soils to restore their essential ecosystem services and limit damages of anthropic activities onto these systems. Safe and sustainable solutions for long-term recovery must be designed, ideally by recycling existing resources. Using ash from combustion of residual forest biomass at the pulp and paper industry is an interesting and sustainable strategy to recover mining soils.
View Article and Find Full Text PDFEnviron Sci Technol
October 2021
There is increasing pressure on global agricultural systems due to higher food demand, climate change, and environmental concerns. The design of nanostructures is proposed as one of the economically viable technological solutions that can make agrochemical use (fertilizers and pesticides) more efficient through reduced runoff, increased foliar uptake and bioavailability, and decreased environmental impacts. However, gaps in knowledge about the transport of nanoparticles across the leaf surface and their behavior limit the rational design of nanoparticles for foliar delivery with controlled fate and limited risk.
View Article and Find Full Text PDFHere we compared the efficiency of Cu extraction (dissolved + particulate) from two soils dosed with CuO nanoparticles (NPs) at 50 or 250 mg kg by pore water collection, and single- and multi-step soil extraction tests. Pore water collection recovered low levels of Cu (<0.18%, regardless of soil type or Cu dose).
View Article and Find Full Text PDFThe objectives of this research were to quantify the impact of organic matter content, soil pH and moisture content on the dissolution rate and solubility of copper oxide nanoparticles (CuO NPs) in soil, and to develop an empirical model to predict the dissolution kinetics of CuO NPs in soil. CuO NPs were dosed into standard LUFA soils with various moisture content, pH and organic carbon content. Chemical extractions were applied to measure the CuO NP dissolution kinetics.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2018
The anthropogenic input of potentially toxic elements (PTEs) from industry, agrochemicals, etc., into the environment are of great concern. Models derived from pedotransfer functions can provide estimates of the levels of PTEs based on soil attributes.
View Article and Find Full Text PDFEnviron Sci Technol
March 2018
It has been suggested, but not previously measured, that dissolution kinetics of soluble nanoparticles such as CuO nanoparticles (NPs) in soil affect their phytotoxicity. An added complexity is that such dissolution is also affected by the presence of plant roots. Here, we measured the rate of dissolution of CuO NPs in bulk soil, and in soil in which wheat plants ( Triticum aestivum) were grown under two soil NP dosing conditions: (a) freshly added CuO NPs (500 mg Cu/kg soil) and (b) CuO NPs aged for 28 d before planting.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2017
Although bottom ash (BA) [or mixtures of bottom and fly ash (FA)] from clean biomass fuels is currently used as liming agent, additive for compost, and fertilizer on agricultural and forest soils in certain European countries, in several other countries most of the ashes are currently disposed in landfills. This is due to both a lack of a proper classification of the materials and of regulatory barriers.Chemical characterization including analysis of an array of potentially toxic elements (PTEs) proved that over 100,000 tons of BA currently landfilled every year in Portugal actually complied with legal limits for PTEs for soil fertilizers applied in other countries.
View Article and Find Full Text PDFRecently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling.
View Article and Find Full Text PDFEnviron Sci Technol
February 2017
We assess the effect of CuO nanoparticle (NP) concentration and soil aging time on the extractability of Cu from a standard sandy soil (Lufa 2.1). The soil was dosed with CuO NPs or Cu(NO3)2 at 10 mg/kg or 100 mg/kg of total added Cu, and then extracted using either 0.
View Article and Find Full Text PDFAs plants constitute the foundation of the food chain, concerns have been raised about the possibility of toxic concentrations of metals and metalloids being transported from plants to the higher food chain strata. In this perspective, the use of important phytotoxicity endpoints may be of utmost significance in assessing the hazardous nature of metals and metalloids and also in developing ecological soil screening levels. The current study aimed to investigate the role of glutathione (GSH) and its associated enzymes in the metabolic adaptation of two grass species namely Eriophorum angustifolium Honck.
View Article and Find Full Text PDFThis study focussed on a comparison of the extractability of mercury in soils with two different contamination sources (a chlor-alkali plant and mining activities) and on the evaluation of the influence of specific soil properties on the behaviour of the contaminant. The method applied here did not target the identification of individual species, but instead provided information concerning the mobility of mercury species in soil. Mercury fractions were classified as mobile, semi-mobile and non-mobile.
View Article and Find Full Text PDFThis paper provides an overview of the evolution of pollution problems in the Northeast Atlantic and associated responses and considers the effectiveness of these measures on environmental contamination. It identifies shortcomings in past practices and shows how marine environmental pollution may be perpetuated if new products and processes release novel contaminants or "emerging substances" without adequate management on a precautionary basis. The study concludes that it is necessary to develop innovative techniques capable of making reasonable quantitative estimates of not only environmental pathways, loads, and concentrations but also the socioeconomic drivers and "upstream" control measures (control, reduction, or elimination of emissions) so that a clear understanding of the causes and effects of our actions can be obtained.
View Article and Find Full Text PDFA mercury-cell chlor-alkali plant operated in Estarreja (North-western Portugal) for 50 years causing widespread environmental contamination. Although production by this process ceased in 2002, mercury contamination from the plant remains significant. The main objective of this study was to investigate mercury impact on the nearby environment and potential risks to local population.
View Article and Find Full Text PDF