Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Touted benefits of nanoparticle-based fertilizers include enhancing crop nutrition by fortifying fruits or grains with nutrient metals and reducing environmental impacts of fertilizer use. However, the properties of the nanoparticles (NPs) and application routes required to achieve these benefits are not yet established. This study examined how a Zn-phosphate shell on ZnO NPs (ZnO_Ph NPs) affected root uptake, cellular distribution, transformation, and translocation of Zn in pepper plants (), and compared the efficacy of root- to foliarly-applied NPs. Pepper plants roots were exposed to ZnO NPs (26 ± 8 nm), ZnO_Ph NPs (48 ± 12 nm), or ionic Zn. After 6 weeks, 30-37% of root-applied Zn was absorbed, with 6.0-7.2% (2.4-2.9 μg) reaching the fruits. ZnO_Ph NPs resulted in lower total Zn uptake, but higher mobility into the root vasculature and stem epidermis, likely due to P-Zn co-delivery modulating translocation mechanisms. Foliar application of these NPs led to lower Zn uptake (2.4% for ZnO_Ph NPs; 0.5% for ZnO NPs) compared to root application. However, a greater proportion of the Zn that was taken up for foliar-applied ZnO_Ph NP translocated to the fruits (27%) compared to root application (10%). Root and foliar applications also led to contrasting Zn speciation in the stem vasculature. Foliar-applied Zn formed only carboxyl and phytate-like complexes, while root-applied Zn also formed Zn-S-R complexes, indicating distinct Zn transport and storage responses, possibly explaining the higher relative mobility to the fruits when foliar-applied. These findings demonstrate that Zn uptake efficiency and speciation depend on both application method and nanoparticle formulation. They also suggest that multi-nutrient NPs can fortify foods, potentially offering a new strategy for improving plant nutrition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121551PMC
http://dx.doi.org/10.1039/d5en00217fDOI Listing

Publication Analysis

Top Keywords

zno nps
16
zno_ph nps
16
nps
12
uptake cellular
8
cellular distribution
8
nps zno_ph
8
pepper plants
8
compared root
8
root application
8
root
6

Similar Publications

Novel dual responsive embelin functionalised ZnO nanomaterials amplify DNA damage and induce apoptosis via pERK1/2/p53 pathway in pancreatic ductal adenocarcinoma.

Biomater Adv

August 2025

Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta 577451, Karnataka, India. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis and chemoresistance. Nano-bioconjugates, due to their enhanced surface-to-volume ratio, offer significant potential in cancer therapy. In this study, we synthesized ZnO nanoparticles (NPs) using solution combustion method and exhibited a particle size range of 20-70 nm as confirmed by TEM analysis.

View Article and Find Full Text PDF

Introduction: Chemotherapy faces limitations such as toxicity and resistance, necessitating novel cancer treatments. Green-synthesized zinc oxide nanoparticles (ZnO-NPs) have attracted attention for their safety, biocompatibility, and therapeutic potential. This study investigates the anticancer efficacy of ZnO-NPs synthesized using the extracellular matrix of Aspergillus biplanus against colorectal cancer cell lines (HCT-116).

View Article and Find Full Text PDF

Zinc oxide (ZnO) nanostructures with deposited silver (Ag) nanoparticles (NPs) exhibit exceptional opportunities for highly sensitive molecular diagnostics by means of the Surface-Enhanced Raman Scattering (SERS). Here we use the well known method of the hydrothermal synthesis of arrays of ZnO nanorods (NRs), followed with deposition of Ag-NPs by facile photochemical reduction under UV-light illumination to obtain ZnO-NRs/Ag-NPs hybrid structures with superior SERS activity. SERS spectra of a probe analyte, i.

View Article and Find Full Text PDF

The present novel trial assesses the prophylactic influence of ZnO NPs in comparison to silymarin against liver damage induced by acetaminophen (APAP). Forty albino rats were allocated into 4 groups (n = `10 rats/ group). Group I (Control), was orally administered 0.

View Article and Find Full Text PDF

Zinc oxide-based nanocomposites are of great scientific interest due to their unique optical properties, making them promising materials for applications in plasmonic and sensor systems. In this study, we pay special attention to the analysis of the magnetic field-induced blue shift of the localized surface plasmon resonance (LSPR) peak in ZnO/Ag nanocomposites. This phenomenon was investigated because of its unexpected manifestation in nonmagnetic semiconductor-based systems that may have a potential for developing magnetically tunable plasmonic devices.

View Article and Find Full Text PDF