Publications by authors named "Marija Prodana"

As global populations escalate and the demand for food and feed intensifies, the generation of agri-food waste is becoming an increasingly critical issue. Addressing this challenge is crucial for optimizing food production and advancing sustainable waste management practices. In this context, insects, including the Black Soldier Fly (BSF, Hermetia illucens), present opportunities for circularity through the bioconversion of organic waste.

View Article and Find Full Text PDF

The global interest in edible insects as sustainable protein sources raises concerns about the bioaccumulation of contaminants, including polycyclic aromatic hydrocarbons (PAHs), to problematic levels. Understanding the accumulation dynamics of PAHs in edible insects is highly relevant due to the widespread sources and toxicological profiles; however, the bioaccumulative potential of PAHs in edible insects is unexplored. This study examined the uptake and elimination dynamics of benzo(a)pyrene (B(a)P), a representative and carcinogenic PAH, in yellow mealworm larvae (YMW, Tenebrio molitor).

View Article and Find Full Text PDF

The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models- (Oligochaeta), (Collembola) and (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.

View Article and Find Full Text PDF

The foreseen increasing application of copper-based nanomaterials (Cu-NMs), replacing or complementing existing Cu-agrochemicals, may negatively impact the soil microbiome. Thus, we studied the effects on soil microbiome function and composition of nano copper oxide (nCuO) or copper hydroxide NMs in a commercial (Kocide®3000) or a lab-synthetized formulation (nCu(OH)) or bulk copper hydroxide (Cu(OH)-B), at the commonly recommended Cu dose of 50 mg(Cu)kg soil. Microbial responses were studied over 28 days in a designed indoor mesocosm.

View Article and Find Full Text PDF

Engineered nanoparticles released into surface water may accumulate in sediments, potentially threatening benthic organisms. This study determined the toxicokinetics in Chironomus riparius of Ag from pristine silver nanoparticles (Ag NPs), a simulating aged Ag NP form (AgS NPs), and AgNO as an ionic control. Chironomid larvae were exposed to these Ag forms through water, sediment, or food.

View Article and Find Full Text PDF

Climate changes and metal contamination are pervasive stressors for soil ecosystems. Mercury (Hg), one of the most toxic metals, has been reported to interact with temperature. However, compared to aquatic biota, little is known about how temperature affects Hg toxicity and bioaccumulation to soil organisms.

View Article and Find Full Text PDF

Background: Non-value agrifood byproducts are rich in biomolecules such as proteins and polysaccharides, and possess film-forming ability, motivating their use in the development of biodegradable plastics. This work studied the feasibility of using locust bean milling-derived dust (LBMD) as a source of biomolecules suitable for developing biodegradable plastics.

Results: LBMD is composed of 56% protein, 28% carbohydrate, 10% moisture, 6% lipid, and 2% ash.

View Article and Find Full Text PDF

The effects of combined exposure to microplastics and contaminants are still not completely understood. To fill this gap, we assessed the effects of polyethylene terephthalate microplastic fibers (100 mg/L; 360 µm average length) on the toxicity of silver nanoparticles (AgNPs; 32 nm) and silver nitrate (AgNO ; 0.1-10 µg Ag/L) to Daphnia magna.

View Article and Find Full Text PDF