Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The traditional Chinese medicine Citri Reticulatae Pericarpium (CRP) was mainly originated from the dried pericarp of Citrus reticulata 'Chachi' (Crc), Citrus reticulata 'Dahongpao' (Crd), Citrus reticulata 'Unshiu' (Cru) and Citrus reticulata 'Tangerina' (Crt) in China. Since these four cultivars have great similarities in morphology, reliable methods to differentiate CRP cultivars have rarely been reported. To discriminate the differences of these CRP cultivars, herein an efficient and reliable method by combining metabolomics, DNA barcoding and electronic nose was first established. The hierarchical three-step filtering metabolomics analysis based on liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) indicated that 9 species-specific chemical markers including 6 flavanone glycosides and 3 polymethoxyflavones could be considered as marker metabolites for discrimination of the geoherb Crc from other cultivars. A total of 19 single nucleotide polymorphism (SNP) sites were found in nuclear internal transcribed spacer 2 (ITS2) of CRP, and three stable SNP sites (33, 128 and 174) in the ITS2 region can distinguish the four CRP cultivars. The electronic nose coupled with chemometrics could also be used to effectively distinguish Crc from other CRP cultivars. Therefore, our results indicated that the integrated method will be an effective strategy for discrimination of similar herbal medicines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2019.01.004DOI Listing

Publication Analysis

Top Keywords

citrus reticulata
16
crp cultivars
16
electronic nose
12
citri reticulatae
8
reticulatae pericarpium
8
hierarchical three-step
8
three-step filtering
8
filtering metabolomics
8
metabolomics analysis
8
dna barcoding
8

Similar Publications

Background: Secondary fermentation can reduce variability in cocoa bean quality caused by the spontaneous, uncontrolled nature of primary fermentation. However, its optimization remains unexplored. This study evaluated the improvement of secondary fermentation through the combined use of Citrus limon peel and inoculation with Candida tropicalis H1Y4-1 as a starter.

View Article and Find Full Text PDF

The aim of the present study was to assess the anti-inflammatory effect of hesperidin. The research was conducted by optimizing the hesperidin extraction process from citrus peel powder, followed by characterization and nutrition profiling of citrus peel hesperidin extract. Citrus peel was collected from the local market and dried in a hot air oven.

View Article and Find Full Text PDF

Removal of antibiotics from anaerobically digested biosolids via synergistic release using ethylenediaminetetraacetic acid disodium salt dihydrate and sodium persulfate oxidation.

J Environ Manage

September 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:

Large-scale anaerobic treatment involves a high risk of antibiotic pollution in anaerobically digested (AD) biosolids, which hinders the efficient utilization of farmland AD biosolids. Herein, a process for the in situ removal of antibiotics from AD biosolids using ethylenediaminetetraacetic acid disodium salt dihydrate as the release agent synergized with sodium persulfate oxidation is reported. The developed process was used to remove antibiotics from actual AD biosolids.

View Article and Find Full Text PDF

The Citrus Under Protective Screen is a novel production system implemented to grow citrus free of huanglongbing disease vectored by Asian citrus psyllid, Diaphorina citri. Other significant pests such as mites, scales, thrips, mealybugs, and leafminers, as well as parasitoids and small predators, have been identified from Citrus Under Protective Screen and require management. Chrysomphalus aonidum (L.

View Article and Find Full Text PDF

Abscisic Acid and Calcium Signals Convergently Regulate Sugar Accumulation by Orchestrating the SRK2A/CIPK6-ABI5-TST2 Module in Citrus.

Plant Biotechnol J

September 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.

Abscisic acid (ABA) and calcium respectively work as crucial plant hormones and second signalling molecules in the regulation of fruit development and quality formation, including the sugar content and flavour quality. However, the regulatory mechanisms of fruit sugar accumulation arising from the interaction between ABA and calcium have not yet been fully elucidated. Here, we show that the application of ABA or calcium enhances sugar accumulation in sweet orange (Citrus sinensis) fruit, accompanied by upregulation of the expression level of tonoplast sugar transporter 2 (CsTST2), which mediates the transport of sugars into the vacuole.

View Article and Find Full Text PDF