98%
921
2 minutes
20
A raw illite-smectite mixed-layered clay (RI/S) was ground for preparing nano-sized I/S clay (NI/S) and subsequently amino-functionalized via grafting of 3-aminopropyltrithoxysilane (APTES) (NH-RI/S and NH-NI/S, respectively). The samples were characterized by particle size analysis, specific surface area measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Si nuclear magnetic resonance (Si NMR). Compared to RI/S, NI/S has a narrow particle size distribution and appears in a platelet-like morphology due to the disintegration/exfoliation of RI/S after grinding. Based on the Si NMR spectra, the appearances of tri-silicate units indicate the chemically grafting of APTES molecules on NH-RI/S and NH-NI/S, respectively. NH-NI/S can adsorb greater amounts of Pb(II) cations and Cr(VI) anions rather than NH-RI/S since NH-NI/S grafts more amounts of amine groups (-NH). The isotherm data for adsorption of Pb(II) cations and Cr(VI) anions can be described by the Langmuir model at different temperatures (i.e., 10 °C, 30 °C, and 50 °C), respectively. The maximum adsorption amounts of Pb(II) cations and Cr(VI) anions onto NH-NI/S calculated by the Langmuir isotherm model are 131.23 mg/g and 36.91 mg/g at 50 °C, respectively. The adsorptions of Pb(II) cations and Cr(VI) anions onto NH-NI/S involve in the surface complexation of NI/S and amine groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-04447-0 | DOI Listing |
Environ Res
September 2025
School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; School of Ecology and Environment, Hainan University, Haikou 570228, China. Electronic address:
Herein, ball-milled magnetic biochar-vermiculite composite (MBC@VT) and ball-milled magnetic biochar-zeolite composite (MBC@ZT) were synthesized via one-step ball-milling, and their adsorption capacities for Pb(II)/P-nitrophenol (PNP) in water were compared. The results demonstrated that the removal of Pb(II) and PNP through both materials was a complex, endothermic reaction mainly driven by chemisorption, with strong tolerance to pH changes and co-existing ions. MBC@VT showed superior adsorption for Pb(II) (reaching 367.
View Article and Find Full Text PDFInt J Phytoremediation
August 2025
Laboratory of Materials and Environment, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco.
Remediation of heavy metal pollution is essential for safeguarding ecological integrity and public health. The present work aimed to prepare a novel biochar from leaves (EC-biochar) for the effective removal of Cd and Pb cations, as representative heavy metals, from aqueous solutions. The adsorption performance of Cd and Pb cations by EC-biochar was assessed by varying different operating parameters ( pH, temperature, EC-biochar dose, adsorption time, and adsorbate concentration).
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli P.O. Box 11-5020, Lebanon.
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN and CD3OD showed solvent-dependent conformational changes with a notable downfield chemical shift in the aromatic proton (H-2) in moving from deuterated methanol to acetonitrile, indicating an interaction of the solvent within the ligand cavity as suggested by molecular dynamic simulations.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
The present study focuses on the synthesis of coconut shell-derived biochar (BC), molybdenum disulfide (MoS), and poly(acrylic acid) (PAA) (BC/MoS/PAA) composite. The composite was synthesized a simple hydrothermal method. The structural and morphological features of the resulting composite were thoroughly characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) surface analysis, and Raman spectroscopy.
View Article and Find Full Text PDFEnviron Geochem Health
August 2025
School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
Biochar has been widely employed in heavy metal wastewater treatment due to its well-developed porosity. However, current studies lack efficient and environmentally friendly modification methods, especially for systems involving coexisting heavy metals. In this study, modified biochar was prepared from chicken manure via KFeO modification, aiming to remove Cd(II)-Pb(II) compound polluted wastewater efficiently.
View Article and Find Full Text PDF