Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study focuses on the synthesis of coconut shell-derived biochar (BC), molybdenum disulfide (MoS), and poly(acrylic acid) (PAA) (BC/MoS/PAA) composite. The composite was synthesized a simple hydrothermal method. The structural and morphological features of the resulting composite were thoroughly characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) surface analysis, and Raman spectroscopy. These analyses confirmed the successful formation and integration of the composite components. Adsorption isotherm studies revealed that Cd(ii) and Pb(ii) ions uptake by the BC/MoS/PAA composite adhered to the Langmuir model, indicating monolayer adsorption onto a homogeneous surface. The maximum adsorption capacities for Cd(ii) and Pb(ii) were determined to be 8.23 mg g and 26.47 mg g, respectively. Kinetic investigations indicated that the adsorption process followed a pseudo-second-order model, suggesting that chemisorption was the dominant mechanism. Moreover, the composite exhibited excellent reusability and selectivity towards Cd(ii) and Pb(ii) ions. Oxygen-containing functional groups, sulfide ions (S), and π-π interactions within the composite imply that electrostatic attraction, surface complexation, and cation-π interactions were the primary forces governing the adsorption process. These findings highlight the BC/MoS/PAA composite's significant potential for effectively removing Cd(ii) and Pb(ii) from contaminated wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378402PMC
http://dx.doi.org/10.1039/d5ra03405aDOI Listing

Publication Analysis

Top Keywords

cdii pbii
20
composite
8
polyacrylic acid
8
bc/mos/paa composite
8
pbii ions
8
adsorption process
8
cdii
5
pbii
5
adsorption
5
synthesis biochar/mos
4

Similar Publications

Remediation of heavy metal pollution is essential for safeguarding ecological integrity and public health. The present work aimed to prepare a novel biochar from leaves (EC-biochar) for the effective removal of Cd and Pb cations, as representative heavy metals, from aqueous solutions. The adsorption performance of Cd and Pb cations by EC-biochar was assessed by varying different operating parameters ( pH, temperature, EC-biochar dose, adsorption time, and adsorbate concentration).

View Article and Find Full Text PDF

This study assessed the health risks of heavy metal contamination in groundwater in Siwa Oasis, Egypt's northwestern desert, and their potential decontamination using a marble-based nanoporous Ca-MCM-41 structure as an adsorbent. Fe, Cd, Cr, Pb, and Mn contents exceeded World Health Organization (WHO) guidelines with potential non-carcinogenic risks and carcinogenic risks based on the hazard index (HI) and Monte Carlo simulations. Ca-MCM-41 showed significant performances in the removal of most of these toxic ions with batch saturation uptake capacities of 239 mg/g Cd(II), 252 mg/g Fe(II), 308 mg/g Pb(II), 132 mg/g Cr(VI), and 154.

View Article and Find Full Text PDF

The present study focuses on the synthesis of coconut shell-derived biochar (BC), molybdenum disulfide (MoS), and poly(acrylic acid) (PAA) (BC/MoS/PAA) composite. The composite was synthesized a simple hydrothermal method. The structural and morphological features of the resulting composite were thoroughly characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) surface analysis, and Raman spectroscopy.

View Article and Find Full Text PDF

Rapid, low-cost trace inorganic Hg(ii) detection in environmental waters remains a critical public-health challenge. Here, we engineered into a naked-eye whole-cell biosensor by coupling a redesigned MerR-P element to the pyomelanin biosynthetic pathway. Three 4-hydroxyphenylpyruvate dioxygenase (HppD) homologs from WS, 4AK4, and PAO1 were codon-optimized and functionally screened.

View Article and Find Full Text PDF

Sulfur-Engineered Second-Shell in Fe-N Catalysts: Dual Active Sites Harmonized Activity and Stability in Real Water Environment.

Small

August 2025

Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.

Single-atom catalysts (SACs) exhibit outstanding catalytic activity, yet their application in real complex environments is constrained by the single active sites and instabilities that are susceptible to inactivation. Extensive efforts have been made to regulate the metal coordination environment, but the catalytic role of nonmetal dopants, especially beyond the first shell, remains underexplored. Herein, S-engineered second-shell Fe single-atom catalysts (FeNSC) are reported, in which S sites not only function as additional nonmetallic active sites separated from Fe but also reinforce the stability of the catalysts.

View Article and Find Full Text PDF