Harnessing complex fluid interfaces to control colloidal assembly and deposition.

J Colloid Interface Sci

Department of Mechanical Engineering, Binghamton University, The State University of New York, Binghamton, NY 13902, USA. Electronic address:

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypothesis: Capillary interactions play an important role in directing colloidal assembly on fluid interfaces. Interface curvature is expected to influence not only individual particle migration on interfaces but also capillary forces between nearby particles. In drying droplets, we hypothesize that the assembly and deposition of particles bound to droplet surface are controlled by the interplay between capillary effects and evaporation-driven flow.

Experiments: Using lattice Boltzmann-Brownian dynamics (LB-BD) simulations, we modeled large-scale assembly of nanoparticles on fluid interfaces that have complex geometries and investigate the subsequent deposition upon complete evaporation. A systematic study was performed for geometrically-controlled sessile droplets whose surfaces exhibit varying curvature fields.

Findings: The simulations show that the particle dynamics on nonuniformly curved interfaces are anisotropic and governed by particle-pair capillary interactions and curvature-induced capillary migration. A theoretical model was developed to predict the capillarity-induced assembly. Using the curved surface as a template, drying droplets with surface-bound particles deposit distinct patterns as a result of the competition between the capillary effects and evaporation-induced convection. These findings could provide new opportunities in the directed assembly and deposition of colloidal particles with potential applications in fabricating functional materials from nanoscale building blocks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.01.046DOI Listing

Publication Analysis

Top Keywords

fluid interfaces
12
assembly deposition
12
colloidal assembly
8
capillary interactions
8
drying droplets
8
capillary effects
8
assembly
6
capillary
6
interfaces
5
harnessing complex
4

Similar Publications

Lutein is a plant pigment beneficial for eye health and for preventing retinal-related diseases. However, lutein is unstable, with low oral bioavailability. In this study, lutein fromwas loaded into cubosome lipid nanocarriers, both neutral (lutein-MO) and cationic (lutein-MO-DOTAP); the release, stability, and retinal penetration of the drug were improved.

View Article and Find Full Text PDF

Decoupling Transport of Salt Ions and Water in Hierarchically Structured Hydrogel for High Salinity Desalination.

Adv Mater

September 2025

Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.

View Article and Find Full Text PDF

Direct Etching Silicon Carbide Via Electro-Enhanced Catalytic Reactions.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310058, China.

We report an electro-enhanced catalytic etching approach for direct atomic-level patterning of single-crystal 4H-SiC (0001) surfaces. The process utilizes platinum-coated probes under a negative sample bias, which enhances catalytic reactions and promotes etching of SiC without additional mechanical load. Unlike traditional etching approaches that rely on hazardous chemicals such as hydrofluoric acid, this approach operates under ambient conditions, offering improved safety and environmental compatibility.

View Article and Find Full Text PDF

Progress and Future Challenges in Bionic Drag Reduction Research Inspired by Fish Skin Properties.

ACS Appl Mater Interfaces

September 2025

College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.

During the long course of evolution, fish have developed complex skin structures to adapt to the dynamic aquatic environment. These skin features not only reflect optimal adaptation to the aquatic environment but also play a key role in effectively reducing fluid drag and improving swimming efficiency, to reveal the intrinsic connection between the complex skin structure of fish and drag reduction performance and to provide new design ideas for the drag reduction surface of underwater vehicles. Based on the different drag reduction characteristics of fish skin structures, this paper divides existing biomimetic drag reduction technologies into three categories: riblet drag reduction, flexible drag reduction, and composite drag reduction.

View Article and Find Full Text PDF

In recent decades, arthroscopic meniscal repair has been increasingly indicated for meniscal tears in the last decades. Although literature generally reports favorable surgical outcomes, it remains unclear whether the repaired meniscus maintains its function over the long term while performing its chondroprotective function without recurrent tear after clinical healing. A 43-year-old Japanese man who underwent meniscal repair for a bucket handle tear of the medial meniscus (MM) at the age of 15 years presented with right knee pain and catching symptoms without a preceding traumatic event.

View Article and Find Full Text PDF