Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection.

Dalton Trans

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering; National Engineering Research Center for Nanomedicine, Department of Bio

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal ions play a critical role in human health and abnormal levels are closely related to various diseases. Therefore, the detection of metal ions with high selectivity, sensitivity and accuracy is particularly important. This article highlights and comments on the coordination-induced structural changes of DNA-based optical, electrochemical and optical-electrochemical-combined sensors for metal ions detection. Challenges and potential solutions of DNA-based sensors for the simultaneous detection of multiple metal ions are also discussed for further development and exploitation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt04733bDOI Listing

Publication Analysis

Top Keywords

metal ions
20
coordination-induced structural
8
structural changes
8
changes dna-based
8
dna-based optical
8
optical electrochemical
8
sensors metal
8
ions detection
8
detection metal
8
metal
5

Similar Publications

The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.

View Article and Find Full Text PDF

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF

A Novel Nanozyme-based Coordination Compound for Synergistic Periprosthetic Joint Infection Treatment and Bone Repair.

Adv Healthc Mater

September 2025

Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.

Periprosthetic joint infection (PJI) represents a serious complication following joint arthroplasty, and it often results in implant failure, prolonged morbidity, and additional healthcare burdens. Current clinical strategies for PJI treatment face obstacles, including antibiotic resistance, high recurrence rate, and compromised bone repair. To address these challenges, a novel nanozyme-based coordination compound designated as W-GA-Van@Zn is developed.

View Article and Find Full Text PDF

Field Driven Solid-State Defect Control of Bilayer Switching Devices: Ionic Transport Kinetics within Layers and across the Interfaces.

ACS Appl Mater Interfaces

September 2025

Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Nanoionic devices, crucial for neuromorphic computing and ionically enabled functional actuators, are often kinetically limited. In bilayer configurations, experimentally deconvoluting ion transport within individual layers from the kinetics of transfer across solid-solid interfaces, however, remains a challenge, hindering rational device optimization. Here, we extend the dynamic current-voltage (-) technique to a PrCeO/LaCeCuO (PCO/LCCO) bilayer system, enabling the isolation and quantification of distinct ion transport processes.

View Article and Find Full Text PDF

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF