Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Baicalein, a flavonoid extracted from the roots of Georgi., has various pharmacological effects due to its high antioxidant activity. However, no study has yet been conducted on the protective efficacy of baicalein against oxidative stress in Schwann cells. In this study, we evaluated the protective effect of baicalein on DNA damage and apoptosis induced by hydrogen peroxide (HO) in HEI193 Schwann cells. For this purpose, HEI193 cells exposed to HO in the presence or absence of baicalein were applied to cell viability assay, immunoblotting, Nrf2-specific small interfering RNA (siRNA) transfection, comet assay, and flow cytometry analyses. Our results showed that baicalein effectively inhibited HO-induced cytotoxicity and DNA damage associated with the inhibition of reactive oxygen species (ROS) accumulation. Baicalein also weakened HO-induced mitochondrial dysfunction, increased the Bax/Bcl-2 ratio, activated caspase-9 and -3, and degraded poly(ADP-ribose) polymerase. In addition, baicalein increased not only the expression but also the phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2) and promoted the expression of heme oxygenase-1 (HO-1), a critical target enzyme of Nrf2, although the expression of kelch-like ECH-associated protein-1 was decreased. However, the inhibition of Nrf2 expression by transfection with Nrf2-siRNA transfection abolished the expression of HO-1 and antioxidant potential of baicalein. These results demonstrate that baicalein attenuated HO-induced apoptosis through the conservation of mitochondrial function while eliminating ROS in HEI193 Schwann cells, and the antioxidant efficacy of baicalein implies at least a Nrf2/HO-1 signaling pathway-dependent mechanism. Therefore, it is suggested that baicalein may have a beneficial effect on the prevention and treatment of peripheral neuropathy induced by oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332480PMC
http://dx.doi.org/10.7150/ijms.27005DOI Listing

Publication Analysis

Top Keywords

schwann cells
16
baicalein
12
dna damage
12
hei193 schwann
12
nrf2/ho-1 signaling
8
baicalein oxidative
8
damage apoptosis
8
efficacy baicalein
8
oxidative stress
8
nrf2 expression
8

Similar Publications

Senescence-regulating agents remodel mesenchymal stem cell-schwann cell circuitry for diabetic bone regeneration.

Biomaterials

August 2025

Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator

Bone healing requires Schwann cells (SCs) paracrine factors for mesenchymal stem cell function. Diabetes mellitus (DM) patients are susceptible to developing SCs dysfunction and impairing bone healing. Rare research considered reconstructing mesenchymal stem cell-schwann cell circuitry in diabetic bone regeneration.

View Article and Find Full Text PDF

Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation.

View Article and Find Full Text PDF

Glial cells are essential regulators of brain homeostasis by orchestrating neuronal function, metabolism and immune responses. However, much less is known about peripheral glial cells, particularly those in the heart. This review explores the development, types and functions of cardiac glial cells, including Schwann cells, satellite glial cells and recently identified cardiac nexus glia, with some reference to their central nervous system counterparts.

View Article and Find Full Text PDF

Natural Polyphenol-Functionalized Schwann Cell-Derived Exosomes as a Temporal Neuromodulation Strategy for Diabetic Periodontitis Therapy.

ACS Nano

September 2025

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.

An interactive bidirectional relationship between periodontitis and diabetes poses great challenges for the treatment of diabetic periodontitis in clinical practice. The hyperglycemic inflammatory periodontal microenvironment is characterized by oxidative damage, chronic invasive infection, excessive inflammation, unbalanced immunomodulation, progressive neuropathy, diabetic vasculopathy, and uncoupled bone resorption and formation responses. The neuromodulation strategy holds great potential to mediate and coordinate temporally the complex microenvironment for diabetic periodontal regeneration.

View Article and Find Full Text PDF

Collagen type XX alpha 1 (COL20A1) was recently found to be highly concentrated in perisynaptic Schwann cells (PSCs), the synaptic glia of the neuromuscular junction (NMJ), suggesting that COL20A1 plays important roles in PSCs and at the NMJ. To investigate this possibility, we generated mice lacking Col20a1 only in Schwann cells (Col20a1-SCKO) and globally (Col20a1-gKO). PSCs and NMJs were morphologically unchanged in adult Col20a1-SCKO mice despite these conditional mice exhibiting gait abnormalities.

View Article and Find Full Text PDF