Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

De novo mutations of the sodium channel gene SCN8A result in an epileptic encephalopathy with refractory seizures, developmental delay, and elevated risk of sudden death. p.Arg1872Trp is a recurrent de novo SCN8A mutation reported in 14 unrelated individuals with epileptic encephalopathy that included seizure onset in the prenatal or infantile period and severe verbal and ambulatory comorbidities. The major biophysical effect of the mutation was previously shown to be impaired channel inactivation accompanied by increased current density. We have generated a conditional mouse mutation in which expression of this severe gain-of-function mutation is dependent upon Cre recombinase. Global activation of p.Arg1872Trp by EIIa-Cre resulted in convulsive seizures and lethality at 2 weeks of age. Neural activation of the p.Arg1872Trp mutation by Nestin-Cre also resulted in early onset seizures and death. Restriction of p.Arg1872Trp expression to excitatory neurons using Emx1-Cre recapitulated seizures and juvenile lethality between 1 and 2 months of age. In contrast, activation of p.Arg1872Trp in inhibitory neurons by Gad2-Cre or Dlx5/6-Cre did not induce seizures or overt neurological dysfunction. The sodium channel modulator GS967/Prax330 prolonged survival of mice with global expression of R1872W and also modulated the activity of the mutant channel in transfected cells. Activation of the p.Arg1872Trp mutation in adult mice was sufficient to generate seizures and death, indicating that successful therapy will require lifelong treatment. These findings provide insight into the pathogenic mechanism of this gain-of-function mutation of SCN8A and identify excitatory neurons as critical targets for therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351781PMC
http://dx.doi.org/10.1093/brain/awy324DOI Listing

Publication Analysis

Top Keywords

activation parg1872trp
16
excitatory neurons
12
sodium channel
8
epileptic encephalopathy
8
gain-of-function mutation
8
parg1872trp mutation
8
seizures death
8
mutation
7
seizures
6
parg1872trp
6

Similar Publications

Purpose: Urosepsis, a condition caused by a urinary tract infection spreading to the bloodstream, has a complex epigenetic behavior in its cellular and molecular pathophysiology. The objective of this study was to identify relevant genes and signaling pathways in adult urosepsis through a bioinformatic analysis of differentially expressed genes (DEGs).

Materials And Methods: In this in-silico study, the GSE69528 dataset, containing 138 total RNA blood samples from patients with sepsis and uninfected controls, was obtained from the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

The timely release of chemical messengers is a crucial step in cell-to-cell communication. Does this release occur as a passive diffusion from the donor membrane or it is actively regulated? A series of studies indicated that chemical messengers' secretion is "sub-quantal". This mode of secretion demands a strongly regulated release mechanism and calls for a thorough characterization of the release sites.

View Article and Find Full Text PDF

Background: Occupational heat stress recommendations aim to achieve thermal equilibrium and keep core temperature (T) below 38.0°C. We assessed the recommended alert limit curves when: (1) work-rest ratios are adjusted based on wet-bulb globe temperature (WBGT) at a fixed rate of metabolic heat production (H) and (2) H is adjusted based on WBGT at a fixed work-rest ratio.

View Article and Find Full Text PDF

Dual-Mode Hybrid Discharge Plasma-Activated Injectable Hydrosol for Enhanced Immunotherapeutic Cancer Therapy.

Adv Healthc Mater

September 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.

View Article and Find Full Text PDF

Magnetic-field enhancement of the oxygen evolution reaction (OER) represents a promising route toward more efficient alkaline water electrolyzers, yet its origin remains debated due to overlapping effects of mass transport and reaction kinetics. Here, we present a general experimental strategy that employs strong forced convection to suppress uncontrolled transport arising from natural diffusion and magnetohydrodynamic (MHD) flows. Using polycrystalline Au electrodes, we show that this approach resolves subtle OER variations under controlled flow and field conditions.

View Article and Find Full Text PDF