98%
921
2 minutes
20
This work assesses the feasibility of sequential persulfate and Fenton oxidation for the decolorization and mineralization of landfill leachate (5600 mg L TOC; pH: 8.6) in a continuous batch-recirculation system. Firstly, it was analyzed the role of the operational conditions upon the persulfate activation evaluating the effects of electrolysis, ilmenite (FeTiO) as a source of Fe(II) and UV-LED (at 365 nm). The studied variables include current density (j) (50-200 mA cm), persulfate dose (46.8-234 mM) and mineral concentration (500-1500 mg L). The increase in j enhanced the hypochlorite generation and PS conversion to SO and, consequently, decolorization efficiency increasing the penetration of light through the solution and the photoreduction of Fe(III) to Fe(II) in the FeTiO surface. The combined electrolysis/FeTiO/UV-LED showed synergetic effect compared to the individual processes, achieving mineralization around 53% under the optimum operating conditions (1 g L of FeTiO, using 234 mM of PS at 200 mA cm under UV-LED radiation). The subsequent Fenton oxidation once the pH decreased up to around 3, led to overall mineralization above 90% after 480 min, confirming the suitability of this combined treatment to deal with recalcitrant and highly colored effluents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2018.10.007 | DOI Listing |
Colloids Surf B Biointerfaces
September 2025
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation
In this study, we develop a hyaluronic-tannic acid (HA-TA) hydrogel loaded with Cu nanoparticles attach to MXene (MXene@Cu) to explore its potential as a targeted breast cancer treatment. The MXene@Cu nanosheets exhibit activity in depleting glutathione (GSH) and inducing reactive oxygen species (ROS) through the Fenton-like reaction. They can down-regulate the activity of glutathione peroxidase 4 (GPX4), leading to the accumulation of lipid peroxides (LPO) and inducing ferroptosis in tumor cells.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
September 2025
Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute under - Department of Science & Technology (Govt. of India).
Iron is an essential trace element for the human body, but having too much or too little of it can cause various biological issues. When ferrous ions react with hydrogen peroxide, they create highly reactive and soluble hydroxyl radicals that can damage cells through oxidation. This reaction, known as the Fenton reaction, can cause lipid peroxidation and ferroptosis.
View Article and Find Full Text PDFACS Omega
September 2025
College of Materials and Chemical Engineering, Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, Anhui 237012, P. R. China.
Photo-Fenton oxidation, as a promising wastewater treatment technology, suffers from double barriers: the sluggish Fenton catalytic rate of transition metal ions and inefficient visible light absorption, both of which severely constrain the performance enhancement of catalytic systems. Therefore, accelerating electron transfer processes and broadening optical absorption spectra have become critical scientific challenges for practical implementation. Herein, a composite catalyst system based on Au-Ag-Cu trimetallic species codoped on hydroxyapatite (HAp) was reported via an ion/ligand impregnation method.
View Article and Find Full Text PDFWater Res
September 2025
State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:
Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Physical & Computational Science Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
Although heterogeneous photo-Fenton reactions on nanoparticulate iron oxides effectively degrade organic pollutants, the underlying surface mechanisms remain debated. Here, we demonstrate how these pathways are modulated by specific hematite crystal facets. To investigate the influence of particle surface structure, methylene blue (MB) adsorption and photodegradation kinetics are examined using facet-engineered hematite nanoparticles with distinct exposed facets.
View Article and Find Full Text PDF