98%
921
2 minutes
20
Background: Increased lower body fat is associated with reduced cardiometabolic risk. The molecular basis for depot-specific differences in gluteofemoral (GF) compared with abdominal (A) subcutaneous adipocyte function is poorly understood. In the current report, we used a combination of Assay for Transposase-Accessible Chromatin followed by sequencing (ATAC-seq), RNA-seq, and chromatin immunoprecipitation (ChIP)-qPCR analyses that provide evidence that depot-specific gene expression patterns are associated with differential epigenetic chromatin signatures.
Methods: Preadipocytes cultured from A and GF adipose tissue obtained from premenopausal apple-shaped women were used to perform transcriptome analysis by RNA-seq and assess accessible chromatin regions by ATAC-seq. We measured mRNA expression and performed ChIP-qPCR experiments for histone modifications of active (H3K4me3) and repressed chromatin (H3K27me3) regions respectively on the promoter regions of differentially expressed genes.
Results: RNA-seq experiments revealed an A-fat and GF-fat selective gene expression signature, with 126 genes upregulated in abdominal preadipocytes and 90 genes upregulated in GF cells. ATAC-seq identified almost 10-times more A-specific chromatin-accessible regions. Using a combined analysis of ATAC-seq and global gene expression data, we identified 74 of the 126 abdominal-specific genes (59%) with A-specific accessible chromatin sites within 200 kb of the transcription start site (TSS), including HOXA3, HOXA5, IL8, IL1b, and IL6. Interestingly, only 14 of the 90 GF-specific genes (15%) had GF-specific accessible chromatin sites within 200 kb of the corresponding TSS, including HOXC13 and HOTAIR, whereas 25 of them (28%) had abdominal-specific accessible chromatin sites. ChIP-qPCR experiments confirmed that the active H3K4me3 chromatin mark was significantly enriched at the promoter regions of HOXA5 and HOXA3 genes in abdominal preadipocytes, while H3K27me3 was less abundant relative to chromatin from GF. This is consistent with their A-fat specific gene expression pattern. Conversely, analysis of the promoter regions of the GF specific HOTAIR and HOXC13 genes exhibited high H3K4me3 and low H3K27me3 levels in GF chromatin compared to A chromatin.
Conclusions: Global transcriptome and open chromatin analyses of depot-specific preadipocytes identified their gene expression signature and differential open chromatin profile. Interestingly, A-fat-specific open chromatin regions can be observed in the proximity of GF-fat genes, but not vice versa.
Trial Registration: Clinicaltrials.gov, NCT01745471 . Registered 5 December 2012.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258289 | PMC |
http://dx.doi.org/10.1186/s13148-018-0582-0 | DOI Listing |
Haematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFMol Cancer Ther
September 2025
Case Western Reserve University School of Medicine, Cleveland, OH, United States.
The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2025
Department of Medicine/Division of Cardiology, University of California Los Angeles. (S.S., C.R.S., L.F., M.P., C.P., Z.Z., J.J.M., R.C.D., D.S., A.J.L.).
Background: In genetic studies with the Hybrid Mouse Diversity Panel, we previously identified a chromosome 9 locus for atherosclerosis. We now identify NNMT (nicotinamide -methyltransferase), an enzyme that degrades nicotinamide, as the causal gene in the locus and show that the underlying mechanism involves salvage of nicotinamide to nicotinamide adenine dinucleotide (NAD).
Methods: Gain/loss of function studies in macrophages were performed to examine the role of NAD levels in macrophage proliferation and apoptosis in atherosclerosis.
Circ Genom Precis Med
September 2025
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China (J.Z., S.R., L.C., M.C., F.T., B.A., Y.Y., H.L.).
Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.
Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants.
Chembiochem
September 2025
School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland.
Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive cancer with poor response to standard chemotherapy. In search of new therapeutic leads, a library of 435 fractions prepared from the Irish marine biorepository was screened against 2 ABC-DLBCL cell lines (TMD8 and OCI-Ly10) and a non-cancerous control cell line (CB33). Active fractions are prioritized based on potency and selectivity.
View Article and Find Full Text PDF