Reinterpreting anomalous competitive binding experiments within G protein-coupled receptor homodimers using a dimer receptor model.

Pharmacol Res

Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, S

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An increasing number of G protein-coupled receptors (GPCRs) have been reported to be expressed in the plasma membrane as dimers. Since most ligand binding data are currently fitted by classical equations developed only for monomeric receptors, the interpretation of data could be misleading in the presence of GPCR dimers. On the other hand, the equations developed from dimer receptor models assuming the existence of two orthosteric binding sites within the dimeric molecule offer the possibility to directly calculate macroscopic equilibrium dissociation constants for the two sites, an index of cooperativity (D) that reflects the molecular communication within the dimer and, importantly, a constant of radioligand-competitor allosteric interaction (K) in competitive assays. Here, we provide a practical way to fit competitive binding data that allows the interpretation of apparently anomalous results, such as competition curves that could be either bell-shaped, monophasic or biphasic depending on the assay conditions. The consideration of a radioligand-competitor allosteric interaction allows fitting these curve patterns both under simulation conditions and in real radioligand binding experiments, obtaining competitor affinity parameters closer to the actual values. Our approach is the first that, assuming the formation of receptor homodimers, is able to explain several experimental results previously considered erroneous due to their impossibility to be fitted. We also deduce the radioligand concentration responsible for the conversion of biphasic to monophasic or to bell-shaped curves in competitive radioligand binding assays. In conclusion, bell-shaped curves in competitive binding experiments constitute evidence for GPCR homodimerization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360119PMC
http://dx.doi.org/10.1016/j.phrs.2018.11.032DOI Listing

Publication Analysis

Top Keywords

competitive binding
12
binding experiments
12
receptor homodimers
8
dimer receptor
8
binding data
8
equations developed
8
radioligand-competitor allosteric
8
allosteric interaction
8
radioligand binding
8
bell-shaped curves
8

Similar Publications

A novel label-free NIR aptasensor based on triphenylmethane dyes for rapid detection of salicylic acid.

Anal Methods

September 2025

Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.

Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF

Cyetpyrafen, chlorfenapyr and spirodiclofen affect the olfactory recognition of Dastarcus helophoroides by acting on DhelOBP4 and DhelOBP21.

Pestic Biochem Physiol

November 2025

National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

The pine-forest guardian Dastarcus helophoroides mainly rely on olfaction to locate its host accurately and interact socially. Odorant binding proteins of D. helophoroides play an important role in olfactory recognition and transporting odors to olfactory receptors to trigger signal transduction.

View Article and Find Full Text PDF

Evaluation of two IgG-scFv bispecific antibodies for neutralizing Omicron variants of SARS-CoV-2.

J Virol Methods

September 2025

Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico. Electronic address:

Bispecific antibodies (bsAbs) offer an alternative to monoclonal antibody (mAb) cocktails for addressing the loss of efficacy due to the rapid emergence of SARS-CoV-2 mutants. The structure and specificity of the parental antibodies influence the development of a highly neutralizing bsAb. To design an effective bsAb, the recognition of 44 single-chain fragment variable (scFv) antibodies against variants of SARS-CoV-2 was evaluated, along with an assessment of their ability to competitively bind to the receptor-binding domain (RBD) compared to the most potent neutralizing mAbs.

View Article and Find Full Text PDF

Pirin does not bind to p65 or regulate NFκB-dependent gene expression but does modulate cellular quercetin levels.

Mol Pharmacol

August 2025

Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; "Nicholas V. Perricone, M.D.," Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, Michigan. Electronic address:

Pirin is a nonheme iron-binding protein with a variety of proposed functions, including serving as a coactivator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography and fluorescence polarization studies did not detect an interaction.

View Article and Find Full Text PDF