Detection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometry.

Biochim Biophys Acta Gene Regul Mech

Rieveschl laboratories for mass spectrometry, University of Cincinnati, Cincinnati, OH, USA. Electronic address:

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A small set of ribonucleoside modifications have been found in different regions of mRNA including the open reading frame. Accurate detection of these specific modifications is critical to understanding their modulatory roles in facilitating mRNA maturation, translation and degradation. While transcriptome-wide next-generation sequencing (NGS) techniques could provide exhaustive information about the sites of one specific or class of modifications at a time, recent investigations strongly indicate cautionary interpretation due to the appearance of false positives. Therefore, it is suggested that NGS-based modification data can only be treated as predicted sites and their existence need to be validated by orthogonal methods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an analytical technique that can yield accurate and reproducible information about the qualitative and quantitative characteristics of ribonucleoside modifications. Here, we review the recent advancements in LC-MS/MS technology that could help in securing accurate, gold-standard quality information about the resident post-transcriptional modifications of mRNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401287PMC
http://dx.doi.org/10.1016/j.bbagrm.2018.10.012DOI Listing

Publication Analysis

Top Keywords

ribonucleoside modifications
12
mass spectrometry
8
modifications
6
detection ribonucleoside
4
modifications liquid
4
liquid chromatography
4
chromatography coupled
4
coupled mass
4
spectrometry small
4
small set
4

Similar Publications

Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.

View Article and Find Full Text PDF

Background: The emergence of drug-resistant pathogens has stimulated the need for the development of new antimicrobial agents. Epigenetic modulation by suppressing epigenetic inhibitors, such as 5-azacytidine (5-aza), has been shown to activate silent biosynthetic gene clusters within a fungus and causes the production of novel secondary metabolites. This research examined this epigenetic modification strategy in the poorly studied filamentous fungus, Ceratorhiza hydrophila, which may help induce the additional production of bioactive compounds.

View Article and Find Full Text PDF

Heat shock protein family A member 4-like (HSPA4L) has been shown to be overexpressed in osteoarthritis (OA) patients, but its role in OA process still unknown. Chondrocytes were stimulated with interleukin-1β (IL-1β) to mimic OA cell model in vitro, and rat was injected with monosodium iodoacetate (MIA) to construct OA rat model in vivo. The expression of HSPA4L, methyltransferase-like 3 (METTL3) and extracellular matrix (ECM)-related markers was examined by qRT-PCR or western blot.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF

FTOregulated mA modification of primiR139 represses papillary thyroid carcinoma metastasis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.

View Article and Find Full Text PDF