Publications by authors named "Balasubrahmanyam Addepalli"

Emerging biopharmaceutical modalities, such as genetic medicines and RNA therapies, offer transformative potential for treating previously intractable diseases. However, these complex drugs present unique analytical challenges due to their intricate structures, sophisticated manufacturing processes, and modality-specific product quality attributes. Liquid chromatography (LC) has emerged as a versatile tool for addressing these challenges, enabling precise characterization and quality control strategies.

View Article and Find Full Text PDF

Charge detection mass spectrometry (CD-MS) is an emerging single-particle technique where both the / and charge are measured individually to determine each ion's mass. It is particularly well-suited for analyzing high mass and heterogeneous samples. With conventional MS, the loss of charge state resolution with high mass samples has hindered the direct coupling of MS to separation techniques like size exclusion chromatography (SEC) and forced the use of lower resolution detectors.

View Article and Find Full Text PDF

Miller-Dieker syndrome (MDS) is a rare neurogenetic disorder resulting from a heterozygous deletion of 26 genes in the MDS locus on human chromosome 17. MDS patients often die in utero and only 10% of those who are born reach 10 years of age. Current treatments mostly prevent complications and control seizures.

View Article and Find Full Text PDF

There has been recent interest in trying to understand the connection between transfer RNA (tRNA) posttranscriptional modifications and changes in-cellular environmental conditions. Here, we report on the identification of the modified nucleoside 5-methylcytidine (mC) in tRNAs. This modification was determined to be present at position 49 of tRNA Tyr-QUA-II.

View Article and Find Full Text PDF
Article Synopsis
  • The study details the creation of bridged ethylene polyethylene oxide (BE-PEO) modified silica packing materials to improve size exclusion chromatography, showing that these modifications enhance analytical capabilities for cell and gene therapy products.
  • The successful formation of BE-PEO bonded surfaces was confirmed through hydrolysis and nuclear magnetic resonance analysis, using silica particles sized at 3 µm with 1000 Å pores.
  • Results indicated that BE-PEO silica columns exhibited higher resolution and recovery, improved column stability, lower baseline noise, and reduced secondary interactions, proving effective for analyzing large biologics like monoclonal antibodies and viral vectors.
View Article and Find Full Text PDF

Peptide mapping requires cleavage of proteins in a predictable fashion so that target protein-specific peptides can be reliably identified and quantified. Trypsin, a commonly used protease in this process, can also undergo self-cleavage or autolysis, thereby reducing the effectivity and even cleavage specificity at lysine and arginine residues. Here, we report highly efficient and reproducible peptide mapping of biotherapeutic monoclonal antibodies.

View Article and Find Full Text PDF

Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis.

View Article and Find Full Text PDF

Although the significance of chemical modifications on RNA is acknowledged, the evolutionary benefits and specific roles in human immunodeficiency virus (HIV-1) replication remain elusive. Most studies have provided only population-averaged values of modifications for fragmented RNAs at low resolution and have relied on indirect analyses of phenotypic effects by perturbing host effectors. Here we analysed chemical modifications on HIV-1 RNAs at the full-length, single RNA level and nucleotide resolution using direct RNA sequencing methods.

View Article and Find Full Text PDF

The biological significance of chemical modifications to the ribonucleic acid (RNA) of human immunodeficiency virus type-1 (HIV-1) has been recognized. However, our understanding of the site-specific and context-dependent roles of these chemical modifications remains limited, primarily due to the absence of nucleotide-resolution mapping of modification sites. In this study, we present a method for achieving nucleotide-resolution mapping of chemical modification sites on HIV-1 RNA using liquid chromatography and tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

More and more transformative gene therapies (GTx) are reaching commercialization stage and many of them use Adeno Associated Viruses (AAVs) as their vector. Being larger than therapeutic antibodies, their size variant analysis poses an analytical challenge that must be addressed to speed up the development processes. Size exclusion chromatography (SEC) can provide critical information on the quality and purity of the product, but its full potential is not yet utilized by currently applied columns that are (i) packed with relatively large particles, (ii) prepared exclusively in large formats and (iii) built using metal hardware that is prone to secondary interactions.

View Article and Find Full Text PDF

The activated forms of the environmental pollutant benzo[a]pyrene (B[a]P), such as benzo[a]pyrene diol epoxide (BPDE), are known to cause damage to genomic DNA and proteins. However, the impact of BPDE on ribonucleic acid (RNA) remains unclear. To understand the full spectrum of potential BPDE-RNA adducts formed, we reacted ribonucleoside standards with BPDE and characterized the reaction products using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Mosquitoes such as must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA (mRNA) codons to add the appropriate amino acid during protein synthesis.

View Article and Find Full Text PDF

Higher-energy collisional dissociation (HCD) of modified ribonucleosides generates characteristic and highly reproducible nucleoside-specific tandem mass spectra (MS/MS). Here, we demonstrate the capability of HCD spectra in combination with spectral matching for the semi-automated characterization of ribonucleosides. This process involved the generation of an HCD spectral library and the establishment of a mass spectral network for rapid detection with high sensitivity and specificity in a retention time-independent fashion.

View Article and Find Full Text PDF

Knowledge of the cleavage specificity of ribonucleases is critical for their application in RNA modification mapping or RNA-protein binding studies. Here, we detail the cleavage specificity and efficiency of ribonuclease MC1 and cusativin using a customized RNA sequence that contained all dinucleotide combinations and homopolymer sequences. The sequencing of the oligonucleotide digestion products by a semi-quantitative liquid chromatography coupled with mass spectrometry (LC-MS) analysis documented as little as 0.

View Article and Find Full Text PDF

Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) encodes multiple RNA molecules. Transcripts that originate from the proviral 5' long terminal repeat (LTR) function as messenger RNAs for the expression of 16 different mature viral proteins. In addition, HIV-1 expresses an antisense transcript () from the 3'LTR, which has both protein-coding and noncoding properties.

View Article and Find Full Text PDF

Knowledge of the structural information is essential for understanding the functional details of modified RNA. Cellular non-coding RNA such as rRNA, tRNA and even viral RNAs contain a number of post-transcriptional modifications with varied degree of diversity and density. In this chapter, we discuss the use of a combination of biochemical and analytical tools such as ribonucleases and liquid chromatography coupled with mass spectrometry approaches for characterization of modified RNA.

View Article and Find Full Text PDF

Oxidative stress triggered by the Fenton reaction (chemical) or UVR exposure (photo) can damage cellular biomolecules including RNA through oxidation of nucleotides. Besides such xenobiotic chemical modifications, RNA also contains several post-transcriptional nucleoside modifications that are installed by enzymes to modulate structure, RNA-protein interactions, and biochemical functions. We examined the extent of oxidative damage to naturally modified RNA which is required for cellular protein synthesis under two different contexts.

View Article and Find Full Text PDF

Ultraviolet radiation (UVR) adversely affects the integrity of DNA, RNA, and their nucleoside modifications. By employing liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based RNA modification mapping approaches, we identified the transfer RNA (tRNA) regions most vulnerable to photooxidation. Photooxidative damage to the anticodon and variable loop regions was consistently observed in both modified and unmodified sequences of tRNA upon UVA (λ 370 nm) exposure.

View Article and Find Full Text PDF

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the gold-standard technique to study RNA and its various modifications. While most research on RNA nucleosides has been focused on their biological roles, discovery of new modifications remains of interest. With state-of-the-art technology, the presence of artifacts can confound the identification of new modifications.

View Article and Find Full Text PDF

Locating ribonucleoside modifications within an RNA sequence requires digestion of the RNA into oligoribonucleotides of amenable size for subsequent analysis by LC-MS (liquid chromatography-mass spectrometry). This approach, widely referred to as RNA modification mapping, is facilitated through ribonucleases (RNases) such as T1 (guanosine-specific), U2 (purine-selective) and A (pyrimidine-specific) among others. Sequence coverage by these enzymes depends on positioning of the recognized nucleobase (such as guanine or purine or pyrimidine) in the sequence and its ribonucleotide composition.

View Article and Find Full Text PDF

Improving our understanding of nucleic acids, both in biological and synthetic applications, remains a bustling area of research for both academic and industrial laboratories. As nucleic acids research evolves, so must the analytical techniques used to characterize nucleic acids. One powerful analytical technique has been coupled liquid chromatography - tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

tRNAs play a critical role in mRNA decoding, and posttranscriptional modifications within tRNAs drive decoding efficiency and accuracy. The types and positions of tRNA modifications in model bacteria have been extensively studied, and tRNA modifications in a few eukaryotic organisms have also been characterized and localized to particular tRNA sequences. However, far less is known regarding tRNA modifications in archaea.

View Article and Find Full Text PDF

A small set of ribonucleoside modifications have been found in different regions of mRNA including the open reading frame. Accurate detection of these specific modifications is critical to understanding their modulatory roles in facilitating mRNA maturation, translation and degradation. While transcriptome-wide next-generation sequencing (NGS) techniques could provide exhaustive information about the sites of one specific or class of modifications at a time, recent investigations strongly indicate cautionary interpretation due to the appearance of false positives.

View Article and Find Full Text PDF

We report the identification and use of a mutant of the purine selective ribonuclease RNase U2 that randomly cleaves RNA in a manner that is directly compatible with RNA modification mapping by mass spectrometry. A number of RNase U2 mutants were generated using site-saturation mutagenesis. The enzyme activity and specificity were tested using oligonucleotide substrates, which revealed an RNase U2 E49A mutant with limited specificity and a tendency to undercut RNA.

View Article and Find Full Text PDF