98%
921
2 minutes
20
Hepatic fibrosis is the central cause of chronic clinical pathology resulting from infection by the blood flukes Schistosoma japonicum or S. mansoni. Much has been elucidated regarding the molecular, cellular and immunological responses that correspond to the formation of the granulomatous response to trapped schistosome eggs. A central feature of this Th2 response is the deposition of collagen around the periphery of the granuloma. To date, traditional histology and transcriptional methods have been used to quantify the deposition of collagen and to monitor the formation of the hepatic granuloma during experimental animal models of schistosomiasis. We have investigated the dynamic nature of granuloma formation through the use of a transgenic mouse model (B6.Collagen 1(A) luciferase mice (B6.Coll 1A-luc)). With this model and whole-animal bioluminescence imaging, we followed the deposition of collagen during an active schistosome infection with Chinese and Philippines geographical strains of S. japonicum and after clearance of the adult parasites by the drug praziquantel. Individual mice were re-imaged over the time course to provide robust real-time quantitation of the development of chronic fibrotic disease. This model provides an improved method to follow the course of hepatic schistosomiasis-induced hepatic pathology and effectively supports the current dogma of the formation of hepatic fibrosis, originally elucidated from static traditional histology. This study demonstrates the first use of the B6.Coll 1A-luc mouse to monitor the dynamics of disease development and the treatment of pathogen-induced infection with the underlying pathology of fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41374-018-0154-0 | DOI Listing |
Lasers Med Sci
September 2025
Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.
To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).
View Article and Find Full Text PDFArch Esp Urol
August 2025
Department of Nephrology, The Fourth Hospital of Changzhou, 231002 Changzhou, Jiangsu, China.
Objective: To explore the impact of Tripterygium wilfordii glycosides (TWG) on glomerulosclerosis within a rat model of chronic kidney disease (CKD), as well as the role of the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in this mechanism.
Methods: Twenty-four clean Sprague-Dawley rats were divided into Sham group (n = 8), model group (n = 8) and TWG group (n = 8). Adriamycin nephropathy (ADRN) rat model was established by jugular vein injection of adriamycin (ADR).
Int J Implant Dent
September 2025
Department of Periodontology, Center for Biomedical Education and Research (ZBAF), School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany.
Background: Guided bone regeneration (GBR) relies on biocompatible membranes to support osteogenesis. 1,4-butanediol diglycidyl ether (BDDE)-crosslinked hyaluronic acid (xHyA) has shown promise in enhancing bone regeneration, yet its mechanisms remain unclear.
Objective: This study evaluates the osteogenic effects of xHyA-functionalized native pericardium collagen membrane (NPCM) and ribose-crosslinked collagen membrane (RCCM) using an airlift culture model with SaOS-2 cells.
Immunol Res
September 2025
Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
The tumor microenvironment (TME) is a complex system composed of the extracellular matrix (ECM) and various cell types, with collagen being one of its core components. Collagen heterogeneity profoundly influences tumor progression and the remodeling of the immune microenvironment by regulating tumor cell behavior, signaling pathways, and immune evasion in TME. Different subtypes of collagen significantly affect tumor growth, metastasis, and therapeutic responses by modulating the infiltration and function of immune cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.
View Article and Find Full Text PDF