98%
921
2 minutes
20
The CRISPR-Cas system biologically serves as an adaptive defense mechanism against phages. However, there is growing interest in exploiting the hypervariable nature of the CRISPR locus, often of viral origin, for microbial typing and tracking. Moreover, the spacer content of any given strain provides a phage resistance profile. Large-scale CRISPR typing studies require an efficient method for showcasing CRISPR array similarities across multiple isolates. Historically, CRISPR arrays found in microbes have been represented by colored shapes based on nucleotide sequence identity and, while this approach is now routinely used, only scarce computational resources are available to automate the process, making it very time-consuming for large datasets. To alleviate this tedious task, we introduce CRISPRStudio, a command-line tool developed to accelerate CRISPR analysis and standardize the preparation of CRISPR array figures. It first compares nucleotide spacer sequences present in a dataset and then clusters them based on sequence similarity to assign a meaningful representative color. CRISPRStudio offers versatility to suit different biological contexts by including options such as automatic sorting of CRISPR loci and highlighting of shared spacers, while remaining fast and user-friendly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267562 | PMC |
http://dx.doi.org/10.3390/v10110602 | DOI Listing |
Med Oncol
September 2025
Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, Kolkata, India.
Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).
View Article and Find Full Text PDFClin Kidney J
September 2025
Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
Genome editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, have transformed biomedical research by enabling precise genetic modifications. Due to its efficiency, cost-effectiveness and versatility, CRISPR has been widely applied across various stages of research, from fundamental biological investigations in preclinical models to potential therapeutic interventions. In nephrology, CRISPR represents a groundbreaking tool for elucidating the molecular mechanisms underlying kidney diseases and developing innovative therapeutic approaches.
View Article and Find Full Text PDF3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDFCRISPR homing gene drive is a disruptive biotechnology developed over the past decade with potential applications in public health, agriculture, and conservation biology. This technology relies on an autonomous selfish genetic element able to spread in natural populations through the release of gene drive individuals. However, it has not yet been deployed in the wild.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Center for Soybean Improvement, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Key Laboratory for Biology and Genetic Improvement o
Soybean is an important source of oil, protein, and feed. However, its yield is far below that of major cereal crops. The green revolution increased the yield of cereal crops partially through high-density planting of lodging-resistant semi-dwarf varieties, but required more nitrogen fertilizers, posing an environmental threat.
View Article and Find Full Text PDF