98%
921
2 minutes
20
Protein-based materials are finding new uses and applications after millennia of impacting the daily life of humans. Some of the earliest uses of protein-based materials are still evident in silk and wool textiles and leather goods. Today, even as silks, wools and leathers are still be used in traditional ways, these proteins are now seen as promising materials for biomaterials, vehicles of drug delivery and components of high-tech fabrics. With the advent of biosynthetic methods and streamlined means of protein purification, protein-based materials-recombinant and otherwise-are being used in a host of applications at the cutting edge of medicine, electronics, materials science and even fashion. This commentary aims to discuss a handful of these applications while taking a critical look at where protein-based materials may be used in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223211 | PMC |
http://dx.doi.org/10.1098/rsob.180113 | DOI Listing |
Nanoscale
September 2025
Centre for Interdisciplinary Research and Innovation (CIDRI), UPES, Dehradun-248007, India.
Cancer remains a critical global health concern, affecting individuals across all age groups and claiming millions of lives annually. Early detection is essential, as it significantly improves prognosis and enhances survival rates. However, conventional diagnostic techniques, despite their accuracy, are often expensive, time-consuming, and inaccessible in remote or resource-limited areas.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China. Electronic address:
Human-machine interaction (HMI) textile interfaces with safe ingredients for intelligent wearable sensing systems are critical in the era of information and the metaverse. To address the dual limitations of traditional synthetic polymer hydrogels (poor biocompatibility) and pure protein-based materials (limited mechanical performance), this study has redesigned the protein structure for a bovine serum albumin (BSA)-based composite hydrogel fibers system. By leveraging the synergistic interplay of dynamic ionic crosslinking and covalent crosslinking, the hydrogel system achieves enhancements in both mechanical strength and processability.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
Hydrogel biomaterials offer great promise for three-dimensional cell culture and therapeutic delivery. Despite many successes, challenges persist in that gels formed from natural proteins are only marginally tunable whereas those derived from synthetic polymers lack intrinsic bioinstructivity. Toward the creation of biomaterials with both excellent biocompatibility and customizability, recombinant protein-based hydrogels have emerged as molecularly defined and user-programmable platforms that mimic the proteinaceous nature of the extracellular matrix.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal.
With the global population steadily rising, the demand for sustainable protein sources has become increasingly urgent. Traditional animal- and plant-based proteins face challenges related to scalability, resource efficiency, and environmental impact. In this context, single-cell protein has emerged as a promising alternative.
View Article and Find Full Text PDFFoods
August 2025
College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China.
Meat analog manufacturing via high-moisture extrusion technology is a complex process wherein the properties of protein materials constitute a critical determining factor. In this study, we enhanced the fiber structure properties of high-moisture extruded peanut protein-based meat analogs by incorporating different starches (cassava starch, acetyl distarch phosphate [ADSP], and hydroxypropyl starch) to address challenges in water retention, emulsification, and digestibility. The impact of the starch content (0, 3, 6, 9, 12%) was assessed using low-field nuclear magnetic resonance, ultraviolet/fluorescence spectroscopy, differential scanning calorimetry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and functional tests.
View Article and Find Full Text PDF