Publications by authors named "Diogo Neves Proenca"

The increasing frequency of extreme weather events affects ecosystems and threatens food production. The reduction of chemical pesticides, together with other ecological approaches, is crucial to more sustainable agriculture. Plant-parasitic nematodes (PPN), especially root-knot nematodes (RKN), spp.

View Article and Find Full Text PDF

With the global population steadily rising, the demand for sustainable protein sources has become increasingly urgent. Traditional animal- and plant-based proteins face challenges related to scalability, resource efficiency, and environmental impact. In this context, single-cell protein has emerged as a promising alternative.

View Article and Find Full Text PDF

Bacterial strain SL12-8 was characterized and isolated from the skin microbiota of , the Perez's frog. Strain SL12-8 stained Gram-negative and formed rod-shaped cells that grew optimally at 25 °C and pH 7.0-7.

View Article and Find Full Text PDF
Article Synopsis
  • Two novel actinomycetal strains, CC-R113 and CC-R104, were isolated from macroalgae in northern Portugal, displaying significant genetic characteristics that suggest they are new species.
  • Genetic analysis revealed strain CC-R113, with a genome size of 7.27 Mb, is closely related to existing strains with high sequence similarity, while strain CC-R104, with a 5.34 Mb genome, is more distantly related to its closest known relatives.
  • Both strains thrive at pH 7.0, 28°C, and low salinity, and they exhibit unique chemotaxonomic features, leading to the proposal of their classification as novel species.
View Article and Find Full Text PDF

According to the inherent ecological mechanisms within community structures, organismic interactions are mediated by chemical structures and signaling molecules as well as enzymatic activities targeting the vital activities of microbial competitors [...

View Article and Find Full Text PDF

The genus belongs to the family (order , phylum ) and harbours aerobic chemoheterotrophic bacteria. Members of this genus were isolated from various aquatic habitats, and our analysis based on global amplicon sequencing data revealed that their relative abundance can reach up to 5-10 % of the bacterioplankton in soda lakes and pans. Although a remarkable fraction of the most frequent genotypes that we identified from continental aquatic habitats is still uncultured, five new alkaliphilic strains were characterized in detail in this study, which were isolated from three different soda lakes and pans of the Carpathian Basin (Hungary).

View Article and Find Full Text PDF

Environmental challenges related to the mismanagement of plastic waste became even more evident during the COVID-19 pandemic. The need for new solutions regarding the use of plastics came to the forefront again. Polyhydroxyalkanoates (PHA) have demonstrated their ability to replace conventional plastics, especially in packaging.

View Article and Find Full Text PDF

, also known as pinewood nematode (PWN), is the pathogenic agent of pine wilt disease (PWD), which affects pine trees around the world. Infection spread globally through international wood commerce and locally by vector beetles, threatening the wood world economy. As climate changes, more countries are becoming susceptible to PWD and, to prevent disease spread and limit economic and ecological losses, better knowledge about this pathogenic agent is needed.

View Article and Find Full Text PDF

Microorganisms that live in association with amphibian skin can play important roles in protecting their host. Within the scenarios of global change, it is important to understand how environmental disturbances, namely, metal pollution, can affect this microbiota. The aim of this study is to recognize core bacteria in the skin cultivable microbiota of the Perez frog () that are preserved regardless of the environmental conditions in which the frogs live.

View Article and Find Full Text PDF

strains are ubiquitous microorganisms with the ability to produce serratomolides, such as serrawettins. These extracellular lipopeptides are described as biocides against many bacteria and fungi and may have a nematicidal activity against phytopathogenic nematodes. Serrawettins W1 and W2 from different strains have different structures that might be correlated with distinct genomic organizations.

View Article and Find Full Text PDF

Pine Wilt Disease (PWD) is caused by , the pinewood nematode, and affects several species of pine trees worldwide. The ecosystem of the trees was investigated as a source of bacteria producing metabolites affecting this ecosystem: trees as target-plant, nematode as disease effector and its insect-vector as shuttle. For example, metals and metal-carrying compounds contribute to the complex tree-ecosystems.

View Article and Find Full Text PDF

Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3.

View Article and Find Full Text PDF

Seven endophytic strains were isolated from the halophyte Halimione portulacoides, collected from Ria de Aveiro, Portugal. To determine their exact taxonomic position, comparative analyses were performed with these strains and closely related type strains of Salinicola species. Genome sequencing and comparison indicated that five of the seven isolated strains comprised distinct and novel species (average nucleotide identity <0.

View Article and Find Full Text PDF

Taxonomical analyses were performed on strain CPA58T, a novel isolate obtained from surface-sterilized aboveground tissues of the halophyte Halimione portulacoides, collected from a salt marsh in Ria de Aveiro, Portugal. The strain was Gram-stain-negative, rod-shaped, oxidase-negative and catalase-positive. Optimal growth was observed at 26 °C, at pH 6-8 and in the presence of 2 to 3 % (w/v) NaCl.

View Article and Find Full Text PDF

Two Gram-negative, rod-shaped, motile bacterial strains, named CPA5T and BR75T, were isolated from the halophyte Halimione portulacoides. Both presented optimum growth at 30 °C, pH 7.0-7.

View Article and Find Full Text PDF

A Gram-stain negative, oxidase- and catalase- positive, motile, aerobic, non-pigmented spirillum, designated CPA1T, was isolated from the surface-sterilized tissues of a halophyte, Halimione portulacoides, collected from a salt marsh in Aveiro, Portugal. The isolate was mesophilic, facultatively alkaliphilic and halophilic, and grew between 18 and 42.5 °C (optimum 30 °C), from pH 5.

View Article and Find Full Text PDF

Pine wilt disease (PWD) is a devastating forest disease present worldwide. In this study we analyzed the effects of the invasion of the pinewood nematode Bursaphelenchus xylophilus, the major pathogen causing PWD, on the endophytic microbiome of adult P. pinaster trees.

View Article and Find Full Text PDF

Potential synergetic interaction between chemicals, climate change and the emergence of opportunistic diseases is of utmost concern within the amphibian decline scenario. Understand the structure and dynamic of this microbiome and how environmental stressors act on this community is a priority. The present study aimed to: i) characterize the skin microbiome of Pelophylax perezi frog by looking for variations between populations in reference and under stress conditions (one metal contaminated and another with salinity fluctuations) and ii) evaluate the tolerance of skin-isolated bacteria to chemical contamination.

View Article and Find Full Text PDF

Pine wilt disease (PWD) is native to North America and has spread to Asia and Europe. Lately, mutualistic relationship has been suggested between the pinewood nematode (PWN), Bursaphelenchus xylophilus the causal nematode agent of PWD, and bacteria. In countries where PWN occurs, nematodes from diseased trees were reported to carry bacteria from several genera.

View Article and Find Full Text PDF

Bacterial strain M47C3B(T) was isolated from the endophytic microbial community of a Pinus pinaster tree branch from a mixed grove of pines. Phylogenetic analysis of 16S rRNA gene sequences showed that this organism represented one distinct branch within the family Sphingobacteriaceae, most closely related to the genus Mucilaginibacter. Strain M47C3B(T) formed a distinct lineage, closely related to Mucilaginibacter dorajii KACC 14556(T), with which it shared 97.

View Article and Find Full Text PDF

Bacterial strain A37T2(T) was isolated from the endophytic microbial community of a Pinus pinaster tree trunk and characterized. Strain A37T2(T) was Gram-stain-negative, formed rod-shaped cells, and grew optimally at 26-30 °C and at pH 5.5-7.

View Article and Find Full Text PDF

Bacteria associated with the nematode Bursaphelenchus xylophilus, a pathogen of trees and the causal agent of pine wilt disease (PWD) may play a role in the disease. In order to evaluate their role (positive or negative to the tree), strains isolated from the track of nematodes from infected Pinus pinaster trees were screened, in vitro, for their nematicidal potential. The bacterial products, from strains more active in killing nematodes, were screened in order to identify and characterize the nematicidal agent.

View Article and Find Full Text PDF

Bacillus anthracis BF-1 was isolated from a cow in Bavaria (Germany) that had succumbed to anthrax. Here, we report the draft genome sequence of this strain, which belongs to the European B2 subclade of B. anthracis.

View Article and Find Full Text PDF

The draft genome sequence of Pseudomonas sp. strain M47T1, carried by the Bursaphelenchus xylophilus pinewood nematode, the causative agent of pine wilt disease, is presented. In Pseudomonas sp.

View Article and Find Full Text PDF