Biological Control of Phytopathogens: Mechanisms and Applications.

Pathogens

Department of Life Sciences, ARISE, CEMMPRE, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

According to the inherent ecological mechanisms within community structures, organismic interactions are mediated by chemical structures and signaling molecules as well as enzymatic activities targeting the vital activities of microbial competitors [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302075PMC
http://dx.doi.org/10.3390/pathogens12060783DOI Listing

Publication Analysis

Top Keywords

biological control
4
control phytopathogens
4
phytopathogens mechanisms
4
mechanisms applications
4
applications inherent
4
inherent ecological
4
ecological mechanisms
4
mechanisms community
4
community structures
4
structures organismic
4

Similar Publications

Anastrepha obliqua, a neotropical pest widely distributed in the Americas, attacks mango and other tropical fruits. In Mexico, it is controlled through integrated pest management, using the Sterile Insect Technique (SIT) as a main component. The applicability of SIT is significantly improved with the use of genetic sexing strains (GSS) that allow the possibility to release exclusively sterile males, the primary component of the technique.

View Article and Find Full Text PDF

[ alleviates bleomycin-induced pulmonary fibrosis in mice by inhibiting transformation of lung fibroblasts into myofibroblast].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.

Objectives: To investigate the effect of (HP) on bleomycin (BLM)-induced pulmonary fibrosis in mice and on TGF-β1-induced human fetal lung fibroblasts (HFL1).

Methods: Thirty male C57BL/6 mice were randomly divided into control group, BLM-induced pulmonary fibrosis model group, low- and high-dose HP treatment groups (3 and 21 mg/kg, respectively), and 300 mg/kg pirfenidone (positive control) group. The effects of drug treatment for 21 days were assessed by examining respiratory function, lung histopathology, and expression of fibrosis markers in the lung tissues of the mouse models.

View Article and Find Full Text PDF

Global phosphorus (P) resources are facing a depletion crisis, and pyrolysis of P-rich sewage sludge (SS) offers significant resource potential. Optimizing pyrolysis conditions remains key yet challenging for enhancing P retention and bioavailability. This study conducted a correlation-prediction-causation integrated framework (CPCIF) to investigate how heating temperature (HT), heating rate (HR), and retention time (RT) influence total P enrichment rate (BTPE), relative inorganic P transformation rate (BITP), and relative apatite P transformation rate (BAIP) from SS to biochar during pyrolysis.

View Article and Find Full Text PDF

H5N1 influenza virus-like particles based on BEVS induce robust functional antibodies and immune responses.

Virology

August 2025

Changchun Institute of Biological Products Co.,Ltd, Changchun, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, China. Electronic address:

Avian influenza virus infections pose a potential pandemic threat. The currently licensed vaccines have inherent limitations, emphasizing the urgent need for improved influenza vaccines. Here, we developed a novel hemagglutinin (HA) virus-like particle (VLP) vaccine candidate through the baculovirus expression vector system (BEVS).

View Article and Find Full Text PDF

Interactions Between Active Matters and Endogenous Fields.

Adv Mater

September 2025

Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain.

Active matter, encompassing both natural and artificial systems, utilizes environmental energy to sustain autonomous motion, exhibiting unique non-equilibrium behaviors. Artificial active matter (AAM), such as nano/micromotors, holds transformative potential in precision medicine by enhancing drug delivery and enabling targeted therapeutic interventions. Under the demand for increasing intelligence in AAM, controlling their non-equilibrium processes within complex in vivo environments presents significant challenges.

View Article and Find Full Text PDF