Characterization of the Skin Cultivable Microbiota Composition of the Frog Inhabiting Different Environments.

Int J Environ Res Public Health

Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microorganisms that live in association with amphibian skin can play important roles in protecting their host. Within the scenarios of global change, it is important to understand how environmental disturbances, namely, metal pollution, can affect this microbiota. The aim of this study is to recognize core bacteria in the skin cultivable microbiota of the Perez frog () that are preserved regardless of the environmental conditions in which the frogs live. The characterization of these isolates revealed characteristics that can support their contributions to the ability of frogs to use metal impacted environments. Frog's skin swabs were collected from populations that inhabit a metal-polluted site and three reference (non-metal polluted) sites. Bacterial strains were isolated, identified, and subjected to an acid mine drainage tolerance (AMD) test, collected upstream from a site heavily contaminated with metals, and tested to produce extracellular polymeric substances (exopolysaccharide, EPS). All frog populations had in their cutaneous cultivable microbiota. Significant growth inhibition was observed in all bacterial isolates exposed to 75% of AMD. EPS production was considered a characteristic of several isolates. The data obtained is a preliminary step but crucial to sustain that the cultivable microbiota is a mechanism for protecting frogs against environmental contamination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967507PMC
http://dx.doi.org/10.3390/ijerph18052585DOI Listing

Publication Analysis

Top Keywords

cultivable microbiota
16
skin cultivable
8
microbiota
5
characterization skin
4
cultivable
4
microbiota composition
4
composition frog
4
frog inhabiting
4
inhabiting environments
4
environments microorganisms
4

Similar Publications

Comparative analysis of colonization and survival strategies of regionally predominant LA-MRSA clones ST398 and ST9.

mSystems

September 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Livestock-associated methicillin-resistant (LA-MRSA) displays distinct geographical distribution patterns, with ST398 predominating in Europe and ST9 being the dominant lineage in Asia, particularly China. However, the mechanisms underlying these differences remain poorly understood. In this study, we evaluated the cell adhesion capacity, anti-phagocytic properties, and porcine nasal colonization potential of ST9 and ST398 strains isolated from China and Germany.

View Article and Find Full Text PDF

Mortierella alpina bioinoculant potentiates native microbiota for soil borne disease suppression in Panax notoginseng cultivation.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad

Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.

View Article and Find Full Text PDF

Biochar amendment improves Morchella sextelata yield by enhancing soil NO-N availability and increasing the diversity while decreasing the absolute abundance of fungal community.

Microbiol Res

August 2025

Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China; The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Black morel (Morchella sextelata) is widely regarded as a post-fire mushroom because of its prolific fruiting in post-fire forest soils enriched with charcoal. Intriguingly, artificial cultivation of M. sextelata often incorporates biochar as a soil amendment to enhance yield, although the underlying physicochemical and ecological mechanisms remain unclear.

View Article and Find Full Text PDF

Epidemiological studies in humans have suggested that tomato consumption and the compositional ratios of Prevotella, Megamonas, and Streptococcus in the intestinal microbiota are related to intestinal permeability. In this study, we investigated the causal relationship using Caenorhabditis (C.) elegans.

View Article and Find Full Text PDF

The southwestern, central, and northeastern regions of China are the primary cultivation areas for industrial hemp. Microorganisms within the soil-root continuum play a crucial role in plant health. However, the mechanisms by which these microbial communities respond to environmental gradients remain unclear.

View Article and Find Full Text PDF