Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vertebrate embryogenesis and organogenesis are driven by cell biological processes, ranging from mitosis and migration to changes in cell size and polarity, but their control and causal relationships are not fully defined. Here, we use the developing limb skeleton to better define the relationships between mitosis and cell polarity. We combine protein-tagging and -perturbation reagents with advanced in vivo imaging to assess the role of Discs large 1 (Dlg1), a membrane-associated scaffolding protein, in mediating the spatiotemporal relationship between cytokinesis and cell polarity. Our results reveal that Dlg1 is enriched at the midbody during cytokinesis and that its multimerization is essential for the normal polarity of daughter cells. Defects in this process alter tissue dimensions without impacting other cellular processes. Our results extend the conventional view that division orientation is established at metaphase and anaphase and suggest that multiple mechanisms act at distinct phases of the cell cycle to transmit cell polarity. The approach employed can be used in other systems, as it offers a robust means to follow and to eliminate protein function and extends the Phasor approach for studying in vivo protein interactions by frequency-domain fluorescence lifetime imaging microscopy of Förster resonance energy transfer (FLIM-FRET) to organotypic explant culture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243286PMC
http://dx.doi.org/10.1073/pnas.1713959115DOI Listing

Publication Analysis

Top Keywords

cell polarity
12
discs large
8
polarity
6
cell
6
large controls
4
controls daughter-cell
4
daughter-cell polarity
4
polarity cytokinesis
4
cytokinesis vertebrate
4
vertebrate morphogenesis
4

Similar Publications

Prussian Blue Nanoparticle-Induced Alteration of the Polarization State of Tumor-Associated Macrophages as a Substantial Antitumor Mechanism Against Oral Squamous Cell Carcinoma (OSCC).

Int J Nanomedicine

September 2025

Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.

Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.

Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.

View Article and Find Full Text PDF

The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.

View Article and Find Full Text PDF

Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.

View Article and Find Full Text PDF

Aim: Prickle planar cell polarity (PCP) protein 2 (Prickle2) encodes a homologue of Drosophila prickle and is involved in the non-canonical Wnt/PCP signalling pathway. However, its exact role in dentinogenesis remains unclear. Dentinogenesis, a key process in tooth morphogenesis, involves the patterned arrangement of odontoblasts and the formation of dentine matrix along the pulp cavity.

View Article and Find Full Text PDF

Mammalian motile cilia: Structure, formation, organization, and function.

Semin Cell Dev Biol

September 2025

Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Electronic address:

Cilia are membrane-covered hair-like organelles built on specialized centrioles and conserved throughout eukaryotic evolution. They are either motile or immotile, serving respectively as versatile signaling antennae or elegant beating nanomachines. Accordingly, their dysfunctions cause a wide variety of developmental and degenerative disorders, which in human are syndromes termed ciliopathies.

View Article and Find Full Text PDF