98%
921
2 minutes
20
Many studies have focused on the interactive effects of temperature increases due to global warming and nutrient enrichment on phytoplankton communities. Recently, non-temperature effects of climate change (e.g., decreases in wind speed and increases in solar radiation) on large lakes have received increasing attention. To evaluate the relative contributions of both temperature and non-temperature effects on phytoplankton communities in a large eutrophic subtropical shallow lake, we analyzed long-term monitoring data from Lake Taihu, China from 1997 to 2016. Results showed that Lake Taihu's spring phytoplankton biovolume and composition changed dramatically over this time frame, with a change in dominant species. Stepwise multiple linear regression models indicated that spring phytoplankton biovolume was strongly influenced by total phosphorus (TP), light condition, wind speed and total nitrogen (TN) (radj2 = 0.8, p < 0.01). Partial redundancy analysis (pRDA) showed that light condition accounted for the greatest variation of phytoplankton community composition, followed by TP and wind speed, as well as the interactions between TP and wind speed. Our study points to the additional importance of non-temperature effects of climate change on phytoplankton community dynamics in Lake Taihu.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173452 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205260 | PLOS |
Mar Life Sci Technol
August 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003 China.
Unlabelled: Microhabitat heterogeneity results in significant variations in the thermal environment on a small spatial scale, leading to different intensities of cold stress during extreme low-temperature events. Investigating variations in body temperature and metabolomic responses of organisms inhabiting different microhabitats emerges as an important task for understanding how organisms respond to more frequent extreme low-temperature events in the face of climate change. In the present study, we measured substrate temperature, air temperature, wind speed, light intensity, and body temperature to evaluate the relative importance of drivers that affect body temperature in different microhabitats, and determined the metabolomic responses of intertidal snails and limpets from different microhabitats (snail: exposed vs.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2025
Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
Individuals who work in the heat, such as military personnel and athletes, are often required to rapidly transition from temperate or cooler climates to hot environments. Thus, acclimation strategies are needed for individuals lacking access to hot weather. We sought to develop and validate a practical exercise with overdressing protocol for heat acclimation.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, USA. Electronic address:
This study assesses the performance of the ADMS-Urban dispersion model in estimating 1-h mean nitrogen dioxide (NO) concentrations within the street canyons of Prague. While traditional air quality modeling that relies on sparse data from localized monitoring stations, this approach pioneers the integration of traffic, background, and rooftop sensor network, to archive a more granular validation of model outputs. The results demonstrate robust model performance, with FAC2 values ranging from 0.
View Article and Find Full Text PDFPLoS One
September 2025
Electrical Engineering Determent, Faculty of Engineering, Minia University, Minia, Egypt.
Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
School of Ocean Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China.
This study establishes a quantitative framework using field observations and normal mode theory to reveal wind field control mechanisms over ambient noise vertical directionality in shallow water. Acoustic data from a vertical line array in the northern South China Sea, combined with sound speed profiles, seabed properties, and multi-source wind fields (ERA5 reanalysis/Weibull-distributed synthetics), demonstrate: (1) A 20-km spatial noise-energy threshold (>90% energy contribution), challenging conventional near-field assumptions (1-2 km); (2) frequency-dependent distribution: low-frequency (50-200 Hz) directionality depends on near-field sources, while high-frequency (>400 Hz) energy shifts seaward due to modal cutoff variations; (3) model validation shows 0.96 correlation at 100 Hz/100 km (stratified medium accuracy), but seabed interface waves induce 3.
View Article and Find Full Text PDF