Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most parts of the world are witnessing climatic warming and the trend is expected to increase in the future. It is important to assess the response of watershed hydrology to this warming. Moreover, human interactions and climatic variability influence the water balance of a catchment. We perform contribution analysis along with resilience study using Budyko framework and two parameters (dynamic deviation and modified elasticity), in-order to comprehend the involvement of anthropogenic stress and climatic variance on partitioning of precipitation and their relation with hydrologic resilience to warming shifts across 55 catchments in peninsular India. Here, 23 catchments have displayed hydrologic resilience (low departure and high elasticity) to climatic warming shifts. Only 37.14% of anthropogenic dominated catchments (higher contribution from human activities in runoff changes) were found to be resilient whereas 58.82% of climate dominated catchments had resilience attributes. Most of the catchments on western and extreme southern part of India were not hydrologic resilient. Extensive human interactions tend to depart the catchment from expected hydrological functioning under critical climatic conditions (Warming in our study) that lead to declining of hydrological resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138737PMC
http://dx.doi.org/10.1038/s41598-018-32091-0DOI Listing

Publication Analysis

Top Keywords

hydrologic resilience
12
warming shifts
12
climatic variability
8
anthropogenic stress
8
resilience warming
8
peninsular india
8
climatic warming
8
human interactions
8
dominated catchments
8
climatic
6

Similar Publications

The response of dissolved organic matter dynamics to flood events in tidal estuaries.

J Environ Manage

September 2025

College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:

Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.

View Article and Find Full Text PDF

Designing sustainable Flood Control Systems (FCSs) requires considering both the resiliency of the system and the long-term viability of investments. In this regard, our research aimed at integrating concepts of hydrological resiliency and cost-benefit analysis to design the most effective flood control network. To do so, first, the Storm Water Management Model (SWMM) was developed for simulating flood condition.

View Article and Find Full Text PDF

Prioritising sewersheds based on groundwater infiltration probability: A geospatial approach.

Water Res

September 2025

Centre for Water Systems, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, North Park Road, Exeter, Devon, EX4 4QF, United Kingdom. Electronic address:

Evaluating groundwater infiltration (GWI) in sewer networks is essential for managing network capacities, especially amid growing pressures on network maintenance and operation caused by increasing domestic and storm water inputs. Despite this significance, GWI assessments have received limited attention, especially at large scales. In fact, no previous study has comprehensively evaluated sewersheds based on GWI scores.

View Article and Find Full Text PDF

Tropical peatlands are globally significant ecosystems for carbon cycling and storage, hydrological regulation, and unique biodiversity. There is a diversity of tropical peatland types globally, but tropical peat-forming ecosystems are typically forested without the Sphagnum groundcover that is often characteristic of high-latitude peatlands. Here, we report on a unique tropical peatland situated in Belize that challenges our understanding of both tropical and extra-tropical peatlands owing to the presence of Sphagnum in the undergrowth.

View Article and Find Full Text PDF

Shallow lakes are increasingly subjected to pronounced alterations in hydrological regimes and exacerbated nutrient stoichiometric imbalances due to climate change and anthropogenic factors. Understanding the interactions between watershed eco-hydrological processes and lake systems, particularly their impact on nutrient balance dynamics deserves further investigation. Employing seasonal-trend decomposition (STL), Copula modeling, and the Lindeman-Merenda-Gold (LMG) algorithm, this study systematically analyzed eco-hydrological processes in Poyang Lake basin and identified hydrological regime as the key factor governing lake nutrient balance.

View Article and Find Full Text PDF