Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microwave imaging is a low-cost imaging method that has shown promise for breast imaging and, in particular, neoadjuvant chemotherapy monitoring. The early studies of microwave imaging in the therapy monitoring setting are encouraging. For the neoadjuvant therapy application, it would be desirable to achieve the most accurate possible characterization of the tissue properties. One method to achieve increased resolution and specificity in microwave imaging reconstruction is the use of a soft prior regularization. The objective of this study is to develop a method to use magnetic resonance (MR) images, taken in a different imaging configuration, as this soft prior. To enable the use of the MR images as a soft prior, it is necessary to register the MR images to the microwave imaging space. Registration fiducials were placed around the breast that are visible in both the MRI and with an optical scanner integrated into the microwave system. Utilizing these common registration locations, numerical algorithms have been developed to warp the original breast MR images into a geometry closely resembling that in which the breast is pendant in the microwave system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132061PMC
http://dx.doi.org/10.1109/JERM.2017.2786025DOI Listing

Publication Analysis

Top Keywords

microwave imaging
16
soft prior
12
magnetic resonance
8
resonance images
8
images microwave
8
microwave system
8
microwave
7
imaging
7
breast
5
images
5

Similar Publications

Cuproptosis relies on intracellular copper accumulation and shows great potential in tumor therapy. However, the high content of glutathione (GSH) in tumor cells limits its effectiveness. Furthermore, the mechanism of immune activation mediated by cuproptosis remains unclear.

View Article and Find Full Text PDF

Trans-scale hierarchical metasurfaces for multispectral compatible regulation of lasers, infrared light, and microwaves.

Nanophotonics

August 2025

National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.

Electromagnetic scattering control of optical windows has significant challenges in improving optical transmission and compatibility, especially for multispectral and large-angle incidences, due to material and structure mismatches. This paper presents trans-scale hierarchical metasurfaces (THM) to achieve wide-angle optical transmission enhancement and electromagnetic scattering-compatible regulation in dual-band lasers, and infrared and microwave ranges. THM comprises an ultrafine hollow metal array (UHMA) and a transmission-enhanced micro-nanocone array (TMCA).

View Article and Find Full Text PDF

The management of benign thyroid nodules has evolved significantly with the advent of minimally invasive techniques, offering patients effective alternatives to traditional surgery. Among these, radiofrequency ablation (RFA) and microwave ablation (MWA) have emerged as the leading modalities. RFA, the most widely adopted method, uses high frequency alternating current to induce thermal coagulation.

View Article and Find Full Text PDF

Digital camouflage encompassing optical hyperspectra and thermal infrared-terahertz-microwave tri-bands.

Nat Commun

August 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.

Modern reconnaissance technologies, including hyperspectral and multispectral intensity imaging across optical, thermal infrared, terahertz, and microwave bands, can detect the shape, material composition, and temperature of targets. Consequently, developing a camouflage technique that seamlessly integrates both spatial and spectral dimensions across all key atmospheric windows to outsmart advanced surveillance has yet to be effectively developed and remains a significant challenge. In this study, we propose a digital camouflage strategy that covers the optical (0.

View Article and Find Full Text PDF

Purpose: This meta-analysis aims to evaluate thermal ablation for giant hepatic hemangiomas (GHHs) and compare the clinical outcomes of microwave ablation (MWA) and radiofrequency ablation (RFA).

Methods: A systematic review and meta-analysis followed the Cochrane Collaboration Handbook and PRISMA 2020 guidelines. Eligible studies reporting on patients with GHHs (≥ 4 cm) treated with MWA or RFA were identified through Medline, Scopus, and Web of Science databases.

View Article and Find Full Text PDF