98%
921
2 minutes
20
The chemical composition of atmospheric aerosols was characterized using an on-board single particle aerosol mass spectrometer (SPAMS) over the Southeast China Sea. High-time-resolution observation of marine aerosols was carried out to clarify the source of aerosols and the interaction of marine and continental aerosols. Atmospheric aerosols were determined by the interaction of continental and marine sources over coastal area. Aerosols from continental sources flux into sea surfaces through deposition or diffusion, which results in the rapid decrease of continental aerosols. Five main subtypes of carbonaceous particles are identified as C_Al-Si, C_V-Ni, C_S, C_K, and C_secondary to clarify the impact of marine and continental sources on atmospheric aerosols. High fraction of C_Al-Si and C_secondary is present over XA (Xiamen anchorage), accounting for 23.8% and 18.6% of total carbonaceous particles. Contrarily, the relative percentage of C_S increases as the distance from land to sea increases. The influence of continental aerosols declines, while the contribution of marine aerosols increases as the distance from land to sea increases. Air masses in XA, LSA (land to sea area), SLA (sea to land area), and SA (sea area) were all from ocean during the observation period, resulting in low relative fraction of continental aerosols in SLA, SA, and LSA. High-time-resolution measurement is useful to understand aerosol source types and the impact of marine and continental sources on marine atmosphere aerosols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-2902-5 | DOI Listing |
Mar Environ Res
August 2025
Department of Oceanography, Pusan National University, Busan, 46241, South Korea.
The Yellow Sea (YS) and the East China Sea (ECS), which comprise continental shelves with depths of 200 m or less, are recognized as some of the most productive coastal areas globally. Although this high productivity can contribute to carbon sequestration, the spatiotemporal variability of the biological pump remains unclear. To investigate this variability, net community production (NCP) in August 2020 was estimated based on high-resolution O/Ar measurements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China.
Here, we explore the long-term history of chemical weathering and particle transport from the continents to the oceans by leveraging the histories of Zr/Al, Rb/Al, and Na/Al in marine sediments over the last 2000 My. We interpret these data in the context of elemental behavior in modern weathering environments and modern marine sediments. We find that from 2000 Mya to ca.
View Article and Find Full Text PDFEnviron Res
September 2025
Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, 316021, China; Joint Center for Blue Carbon Research, Ocean Academy, Zhejiang University, Zhoushan, 316021, China; Donghai Laboratory, Zhoushan, 316021, China; Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Sec
Spartina alterniflora as a potential algaecide has invaded coastal ecosystems globally. However, the regional heterogeneity and driving factors of the metabolomic fingerprint in S. alterniflora are still unknown.
View Article and Find Full Text PDFMacroevolutionary trends in vertebrate morphology fundamentally shape our understanding of marine ecosystems through deep time. Body form influences interactions between organisms and their environment, dictating their locomotor capabilities and ability to hunt/escape from other species. Sharks (Elasmobranchii: Selachii) have been suggested to broadly exhibit two discrete body forms: one 'shallow-bodied' form associated with slow-moving benthic species and a 'deep-bodied' form typified by highly active pelagic taxa.
View Article and Find Full Text PDFBMJ Mil Health
August 2025
Military and Health Research Foundation, Laurel, Maryland, USA
Introduction: This study's purpose was to analyse disease and non-battle injury (DNBI) incidence trends in US military personnel from 2010 to 2021 to understand implications for medical readiness.
Methods: A retrospective cohort of deidentified DNBI cases was developed from the person-event data environment for all military personnel between 2010 and 2021. Chronic and acute conditions were identified using the clinical classification software for categorising International Classification of Disease-9-Clinical Modification (ICD-9-CM) codes and clinical classification software refined for categorising ICD-10-CM codes.