Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ginsenosides attract great attention for their bioactivities. However, their contents are low, and many UDP-glycosyltransferases (UGTs) that play crucial roles in the ginsenoside biosynthesis pathways have not been identified, which hinders the biosynthesis of ginsenosides. In this study, we reported that one UDP-glycosyltransferase, UGTPg71A29, from Panax ginseng could glycosylate C20-OH of Rh and transfer a glucose moiety to Rd, producing ginsenosides Rg and Rb, respectively. Ectopic expression of UGTPg71A29 in Saccharomyces cerevisiae stably generated Rg and Rb under its corresponding substrate. Overexpression of UGTPg71A29 in transgenic cells of P. ginseng could significantly enhance the accumulation of Rg and Rb, with their contents of 3.2- and 3.5-fold higher than those in the control, respectively. Homology modeling, molecular dynamics, and mutational analysis revealed the key catalytic site, Gln283, which provided insights into the catalytic mechanism of UGTPg71A29. These results not only provide an efficient enzymatic tool for the synthesis of glycosides but also help achieve large-scale industrial production of glycosides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b02544DOI Listing

Publication Analysis

Top Keywords

biosynthesis ginsenosides
8
characterization udp-glycosyltransferase
4
udp-glycosyltransferase involved
4
involved biosynthesis
4
ginsenosides
4
ginsenosides identification
4
identification critical
4
critical conserved
4
conserved amino
4
amino acid
4

Similar Publications

Numerous people experiencing acute myocardial infarction are also experiencing myocardial ischemia-reperfusion injury (MIRI). Pyroptosis is a core mechanism in MIRI. Tongxinluo (TXL) has a significant protective effect on endothelial cell function.

View Article and Find Full Text PDF

The Fabaceae-specific review highlights the structural, functional, and phylogenetic diversity of UGTs, revealing clade-specific glycosylation mechanisms and novel sugar conjugations that contribute to legume adaptability. These insights offer promising avenues for metabolic engineering and stress-resilient crop development. UDP-glycosyltransferases (UGTs) are the biocatalysts modifying small molecules through glycosylation to enhance their solubility, stability, and bioactivity.

View Article and Find Full Text PDF

Introduction: Ginseng ( C. A. Meyer) is a widely cultivated medicinal plant valued for its bioactive ginsenosides, which are influenced by soil conditions and microbial interactions.

View Article and Find Full Text PDF

The oncogenic transcription factor MYC drives proliferation, metabolism, and therapy resistance in the majority of human cancers, yet its large, nuclear protein-protein interface has long frustrated direct drug discovery. A pivotal breakthrough was the identification of Tribbles pseudokinase 3 (TRIB3) as a high-affinity scaffold that binds the helix-loop-helix/leucine zipper region of MYC, blocks the E3-ubiquitin-ligase, UBE3B, from tagging critical lysines, and thereby prolongs MYC protein half-life while enhancing MYC-MAX transcriptional output. This review integrates structural, biochemical, and in vivo data to show how genetic deletion or pharmacological eviction of TRIB3 collapses MYC levels, silences its gene program, and suppresses tumor growth in B-cell lymphomas and selected solid tumors.

View Article and Find Full Text PDF

A Hybrid Protein-Oxygen Nanomedicine Overcomes Osimertinib Resistance in NSCLC via HIF-1α/VEGF/EGFR Inhibition.

Int J Nanomedicine

September 2025

Department of Thoracic Surgery, Tenth Affiliated Hospital, Southern Medical University (Dongguan People's hospital), Dongguan, Guangdong, 523059, People's Republic of China.

Purpose: Osimertinib, established as the frontline treatment for advanced non-small cell lung cancer (NSCLC), can effectively prolong progression-free survival. However, it faces the problem of reduced treatment persistence due to acquired drug resistance. Meanwhile, tumor hypoxia is also a key driver of drug resistance.

View Article and Find Full Text PDF