Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A multicomponent spectrofluorimetric method has been developed for the simultaneous assay of formylmethylflavin (FMF), an intermediate product in the photolysis of riboflavin (vitamin B), and its side-chain hydrolytic products, lumichrome (LC) in acidic solution and LC and lumiflavin (LF) in the alkaline solution as well as its ring cleavage products, 1,2-dihydro-1-methyl-2-keto-3-quinoxaline carboxylic acid (KA) and 1,2,3,4-tetrahydro-1-methyl-2,3-dioxo-quinoxaline (DQ) in alkaline solution. The assay method also takes into account an oxidation product of FMF, i.e. carboxymethylflavin (CMF), in both acid and alkaline solutions. The method involves adjustment of the pH of hydrolysed solution to 2.0 to convert FMF to its protonated form, extraction of LC (acid solution) or LC and LF (alkaline solution) with chloroform and their simultaneous assay by fluorescence measurement at 478 and 530 nm, respectively. The aqueous phase is readjusted to pH 6.5, extracted with chloroform to remove undegraded FMF and used for the assay of CMF, KA and DQ at 530, 443 and 420 nm, respectively. The chloroform extract is used for the assay of FMF at 530 nm. The proposed method has been validated and applied to the study of the kinetics of a hydrolysis reaction of FMF at pH 11.0. The calibration curves for FMF and degradation products are linear in the range of 0.1-1.0 × 10 M. The limit of detection (LOD) and limit of quantification (LOQ) range from 2.54-5.75 × 10 M and 0.78-1.74 × 10 M, respectively, for these compounds. The mean recovery ranges from 99.3-102.1% with a RSD of 0.14-0.35%. Judging from the molar balance of FMF and the hydrolytic products, uniformity of analytical data during the reactions and linearity of kinetic plot, the method gives accurate results for the assay of FMF and all of its degradation products. It can be conveniently used for the assay of these compounds and for the kinetics and stability studies of FMF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2018.07.066DOI Listing

Publication Analysis

Top Keywords

hydrolytic products
12
alkaline solution
12
fmf
10
multicomponent spectrofluorimetric
8
spectrofluorimetric method
8
assay
8
assay formylmethylflavin
8
simultaneous assay
8
assay fmf
8
fmf degradation
8

Similar Publications

NU-1000/Cu Nanocomposite-Immobilized Organophosphate Hydrolase for the Cascade Conversion of Methyl Parathion to 4-Aminophenol.

Langmuir

September 2025

State Key Laboratory of Synthetic Biology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Effective degradation and detoxification of the highly toxic organophosphate pesticide methyl parathion (MP) are important for pollution treatment and sustainable development. Enzymatic hydrolysis of MP by organophosphate hydrolase (OPH) is an effective way. However, hydrolytic product 4-nitrophenol (4-NP) remains environmentally hazardous.

View Article and Find Full Text PDF

Background: Southern corn leaf blight (SCLB), caused by Cochliobolus heterostrophus, is a major disease that severely affects maize production globally, especially in tropical and subtropical regions. Conventional control strategies, such as chemical fungicides and resistant cultivars, are limited due to environmental and health concerns.

Results: This study explores Bacillus velezensis JLU-55 as a potential biological control agent against C.

View Article and Find Full Text PDF

Slt2 positively regulates Myb-mediated cellulose utilization in .

mBio

September 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Unlabelled: Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development.

View Article and Find Full Text PDF

In response to the challenges of nutrient limitations and low efficiency in synthesizing artificial humic acid (AHA) during the resource utilization of agricultural wastes, this study innovatively developed a process that integrates biogas slurry (BS) impregnation pretreatment with hydrothermal humification (HTH). Using steam-exploded corn straw (SES) as the raw material, the impregnation parameters were optimized (40 °C, liquid-to-solid ratio of 15:1, 18 h, 3 cycles), achieving an AHA yield of 40.61 %, which was over 15 % higher than that of the untreated group.

View Article and Find Full Text PDF

Wastewater as a dual indicator of human and environmental exposure to synthetic antioxidants: Occurrence and fate in biological and advanced wastewater treatment.

Environ Int

August 2025

Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092, Zurich, Switzerland. Electronic address:

Synthetic antioxidants (SAOs) are widely used additives in industrial and consumer products, yet their human exposure and fate throughout wastewater treatment remain poorly understood. This study investigates the occurrence of SAOs and their human metabolites in wastewater influent as well as their abatement in three wastewater treatment plants (WWTPs) employing both conventional and advanced treatment technologies. In vitro human liver S9 assays were performed to generate a SAO metabolite MS2 library containing over 2500 potential metabolites, which was matched against wastewater influent data.

View Article and Find Full Text PDF