A systematic evaluation of analogs and automated read-across prediction of estrogenicity: A case study using hindered phenols.

Comput Toxicol

National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Read-across is an important data gap filling technique used within category and analog approaches for regulatory hazard identification and risk assessment. Although much technical guidance is available that describes how to develop category/analog approaches, practical principles to evaluate and substantiate analog validity (suitability) are still lacking. This case study uses hindered phenols as an example chemical class to determine: (1) the capability of three structure fingerprint/descriptor methods (PubChem, ToxPrints and MoSS MCSS) to identify analogs for read-across to predict Estrogen Receptor (ER) binding activity and, (2) the utility of data confidence measures, physicochemical properties, and chemical R-group properties as filters to improve ER binding predictions. The training dataset comprised 462 hindered phenols and 257 non- hindered phenols. For each chemical of interest (target), source analogs were identified from two datasets (hindered and non-hindered phenols) that had been characterized by a fingerprint/descriptor method and by two cut-offs: (1) minimum similarity distance (range: 0.1 - 0.9) and, (2) closest analogs (range: 1 - 10). Analogs were then filtered using: (1) physicochemical properties of the phenol (termed global filtering) and, (2) physicochemical properties of the R-groups neighboring the active hydroxyl group (termed local filtering). A read-across prediction was made for each target chemical on the basis of a majority vote of the closest analogs. The results demonstrate that: (1) concordance in ER activity increases with structural similarity, regardless of the structure fingerprint/descriptor method, (2) increased data confidence significantly improves read-across predictions, and (3) filtering analogs using global and local properties can help identify more suitable analogs. This case study illustrates that the quality of the underlying experimental data and use of endpoint relevant chemical descriptors to evaluate source analogs are critical to achieving robust read-across predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060417PMC
http://dx.doi.org/10.1016/j.comtox.2017.09.001DOI Listing

Publication Analysis

Top Keywords

hindered phenols
16
case study
12
physicochemical properties
12
analogs
9
read-across prediction
8
study hindered
8
structure fingerprint/descriptor
8
data confidence
8
source analogs
8
fingerprint/descriptor method
8

Similar Publications

This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.

View Article and Find Full Text PDF

Photocatalytic Oxidative Dimerization of Electronically Diverse Phenols Using Borate to Prevent Overoxidation.

J Am Chem Soc

September 2025

Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States.

Phenol overoxidation has severely hindered the advancement and synthetic utility of oxidative phenol coupling for over two decades, preventing the development of general catalytic methods. Electron-deficient phenols resist selective coupling due to their high oxidation potential, while monosubstituted phenols undergo uncontrolled overoxidation, making their selective transformation highly challenging. We present a strategy that harnesses biphenol-boron complexation to suppress overoxidation, unlocking the selective catalytic oxidative coupling of both electron-deficient and monosubstituted phenols.

View Article and Find Full Text PDF

High-temperature Daqu (HTD), an essential fermentation starter in sauce-aroma Baijiu, is characterized by complex microbial communities that vary significantly across production regions. Traditional HTD production faces challenges in consistency and quality control, hindering industrial scalability. This study compared 54 synthetic microbial communities (SynMC)-fortified HTD samples with 39 traditional HTD samples from core production regions, which are Renhuai, Luzhou, and Jinsha, respectively, to elucidate their microbial and metabolic profiles.

View Article and Find Full Text PDF

Sorghum () is an ancient grain and the fifth most produced cereal worldwide, and the most consumed cereal in the semi-arid regions of Africa and Asia, being a key grain for the diet of about 500 million people. It is rich in phenolic compounds (like flavonoids, 3-deoxyanthocyanidins, phenolic acids), resistant starch, and dietary fiber, which may beneficially influence intestinal health. This systematic review analyzed 22 studies to assess the effects of sorghum processing on bioactive compounds and their effects on intestinal health.

View Article and Find Full Text PDF

Titanium (Ti) and Ti alloy are the most widely used implant metals, but the limited bioactivity hinders the further clinical application. Aiming to enhance their osteogenesis, dual biomimetic strategies were utilized to decorate the surface of Ti by topological and biochemical cues. Firstly, a series of concentric circles with TiO nanotubes on Ti were fabricated by photolithography and anodic oxidation.

View Article and Find Full Text PDF