Cytotoxic activity of effector T cells against cholangiocarcinoma is enhanced by self-differentiated monocyte-derived dendritic cells.

Cancer Immunol Immunother

Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), 4th Floor Siriraj Medical Research Center (SiMR), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.

Published: October 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cholangiocarcinoma (CCA) is a cancer of the bile ducts that is associated with poor prognosis and poor treatment outcome. Approximately one-third of CCA patients can undergo surgery, but the recurrence rate is high and chemotherapy often cannot satisfactorily prolong survival. Cellular immunotherapy based on adoptive T-cell transfer is a potential treatment for CCA; however, the development of this technology and the search for an appropriate tumor-associated antigen are still ongoing. To enhance the cytotoxic activity of effector T cells against CCA, we developed self-differentiated monocyte-derived dendritic cells (SD-DC) presenting cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A), which is an overexpressed protein that plays a role in the regulation of tumor growth to activate T cells for CCA cell killing. Dendritic cells (DCs) transduced with lentivirus harboring tri-cistronic cDNA sequences (SD-DC-PR) could produce granulocyte-macrophage colony-stimulating factor, interleukin-4, and PRKAR1A. SD-DC showed similar phenotypes to those of DCs derived by conventional method. Autologous effector T cells (CD3+, CD8+) activated by SD-DC-PR exhibited greater cytotoxic activity against CCA than those activated by conventionally-derived DCs. Effector T cells activated by SD-DC-PR killed 60% of CCA cells at an effector-to-target ratio of 15:1, which is approximately twofold greater than the cell killing performance of those stimulated with control DC. The cytotoxic activities of effector T cells activated by SD-DC-PR against CCA cells were significantly associated with the expression levels of PRKR1A in CCA cells. This finding that SD-DC-PR effectively stimulated autologous effector T cells to kill CCA cells may help to accelerate the development of novel therapies for treating CCA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11028072PMC
http://dx.doi.org/10.1007/s00262-018-2212-2DOI Listing

Publication Analysis

Top Keywords

effector cells
24
cca cells
16
cells
14
cytotoxic activity
12
dendritic cells
12
activated sd-dc-pr
12
cca
11
activity effector
8
cells cholangiocarcinoma
8
self-differentiated monocyte-derived
8

Similar Publications

Shigella type-III secretion system effectors counteract the induction of host inflammation and cell death.

EMBO J

September 2025

Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.

Many enteric bacterial pathogens deliver virulence effectors to counteract host innate immune responses, such as inflammation and cell death, and colonize the intestinal epithelium. However, host cells recognize the disruption of their innate immune signaling by bacterial effectors and induce alternative immune responses, collectively termed "effector-triggered immunity", to clear bacterial pathogens. Here, we describe a mechanism of cell death induction via effector-triggered immunity and the bacterial countermeasures of the pathogen Shigella flexneri.

View Article and Find Full Text PDF

Type I interferon (IFN-I) is highly prevalent in autoimmune disorders and is intricately involved in disease pathogenesis, including Sjögren's disease (SjD), also known as Sjögren's syndrome. Although the T follicular helper (Tfh) cell response has been shown to drive SjD development in a mouse model of experimental Sjögren's syndrome (ESS), the connection between IFN-I and the Tfh cell response remains unclear. As the activation of stimulator of interferon genes (STING) induces IFN-I production, we first demonstrated that mice deficient in STING or IFN-I signaling presented diminished Tfh cells and were completely resistant to ESS development.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a conserved RNA surveillance mechanism that degrades transcripts with premature termination codons (PTCs) and finetunes gene expression by targeting RNA transcripts with other NMD inducing features. This study demonstrates that conditional knockout of , a key NMD component, in oligodendrocyte lineage cells disrupts the degradation of PTC-containing transcripts, including aberrant variants of the RNA-binding protein The loss of SMG5 in both sexes of mice impaired oligodendrocyte differentiation, reduced myelin gene expression, and led to thinner myelin sheaths and compromised motor function in mice. Mechanistically, HNRNPL was shown to regulate the alternative splicing of myelin-associated genes and , and promote oligodendrocyte differentiation.

View Article and Find Full Text PDF

Mitochondrial dysfunction in myeloid cells: a central deficit in autoimmune diseases.

Trends Immunol

September 2025

Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, 10 Center Drive, 12N248C, Bethesda, MD 20892, USA. Electronic address:

Autoimmune diseases arise from genetic and environmental factors that disrupt immune tolerance. Recent studies highlight the role of myeloid cell immunometabolism, particularly mitochondrial dysfunction, in driving autoimmunity. Mitochondria regulate energy homeostasis and cell fate; their impairment leads to defective immune cell differentiation, abnormal effector activity, and chronic inflammation.

View Article and Find Full Text PDF

Background: While highly efficacious for numerous cancers, immune checkpoint inhibitors (ICIs) can cause unpredictable and potentially severe immune-related adverse events (irAEs), underscoring the need to understand irAE biology.

Methods: We used a multidimensional approach incorporating single-cell RNA sequencing, mass cytometry, multiplex cytokine assay, and antinuclear antibody (ANA) profiling to characterize the peripheral immune landscape of patients receiving ICI therapy according to irAE development.

Results: Analysis of 162 patients revealed that individuals who developed clinically significant irAEs exhibited a baseline proinflammatory, autoimmune-like state characterized by a significantly higher abundance of CD57 T and natural killer (NK) T cells, plasmablasts, proliferating and activated CXCR3 lymphocytes, CD8 effector and terminal effector memory T cells, along with reduced NK cells and elevated plasma ANA levels.

View Article and Find Full Text PDF