98%
921
2 minutes
20
Importance: Synaptic loss is well established as the major structural correlate of cognitive impairment in Alzheimer disease (AD). The ability to measure synaptic density in vivo could accelerate the development of disease-modifying treatments for AD. Synaptic vesicle glycoprotein 2A is an essential vesicle membrane protein expressed in virtually all synapses and could serve as a suitable target for synaptic density.
Objective: To compare hippocampal synaptic vesicle glycoprotein 2A (SV2A) binding in participants with AD and cognitively normal participants using positron emission tomographic (PET) imaging.
Design, Setting, And Participants: This cross-sectional study recruited 10 participants with AD and 11 participants who were cognitively normal between November 2015 and June 2017. We hypothesized a reduction in hippocampal SV2A binding in AD, based on the early degeneration of entorhinal cortical cell projections to the hippocampus (via the perforant path) and hippocampal SV2A reductions that had been observed in postmortem studies. Participants underwent high-resolution PET scanning with ((R)-1-((3-(11C-methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one), a compound more commonly known as 11C-UCB-J, for SV2A. They also underwent high-resolution PET scanning with carbon 11-labeled Pittsburgh Compound B (11C-PiB) for β-amyloid, magnetic resonance imaging, and cognitive and neurologic evaluation.
Main Outcomes And Measures: Outcomes were 11C-UCB-J-specific binding (binding potential [BPND]) via PET imaging in brain regions of interest in participants with AD and participants who were cognitively normal.
Results: Ten participants with AD (5 male and 5 female; mean [SD] age, 72.7 [6.3] years; 10 [100%] β-amyloid positive) were compared with 11 participants who were cognitively normal (5 male and 6 female; mean [SD] age, 72.9 [8.7] years; 11 [100%] β-amyloid negative). Participants with AD spanned the disease stages from amnestic mild cognitive impairment (n = 5) to mild dementia (n = 5). Participants with AD had significant reduction in hippocampal SV2A specific binding (41%) compared with cognitively normal participants, as assessed by 11C-UCB-J-PET BPND (cognitively normal participants: mean [SD] BPND, 1.47 [0.37]; participants with AD: 0.87 [0.50]; P = .005). These reductions remained significant after correction for atrophy (ie, partial volume correction; participants who were cognitively normal: mean [SD], 2.71 [0.46]; participants with AD: 2.15 [0.55]; P = .02). Hippocampal SV2A-specific binding BPND was correlated with a composite episodic memory score in the overall sample (R = 0.56; P = .01).
Conclusions And Relevance: To our knowledge, this is the first study to investigate synaptic density in vivo in AD using 11C-UCB-J-PET imaging. This approach may provide a direct measure of synaptic density, and it therefore holds promise as an in vivo biomarker for AD and as an outcome measure for trials of disease-modifying therapies, particularly those targeted at the preservation and restoration of synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233853 | PMC |
http://dx.doi.org/10.1001/jamaneurol.2018.1836 | DOI Listing |
Hum Brain Mapp
September 2025
Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
Acting intentionally is a major aspect of human cognitive development and depends on the ability to link actions with their consequences. Action-effect binding (AEB) is a fundamental mechanism enabling this. While AEB has been well-characterized in adults, its neurophysiological underpinnings during adolescence remain unclear.
View Article and Find Full Text PDFNeurosci Bull
September 2025
Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
The neurological manifestations of SHORT syndrome include intrauterine growth restriction, microcephaly, intellectual disability, hearing loss, and speech delay. SHORT syndrome is generally believed to be caused by PIK3R1 gene mutations and impaired PI3K-AKT activation. Recently, a clinical case report described a SHORT syndrome with a novel mutant in PRKCE gene encoding protein kinase Cε (PKCε).
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central
Biol Psychol
September 2025
Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China. Electronic address:
Working memory (WM) regulates information flow through gate mechanisms, consisting of four subprocesses: gate opening, gate closing, updating, and substitution. However, their neural mechanisms remain underexplored. While emotion-cognition interactions are well studied, the effects of negative mood on these subprocesses are unclear.
View Article and Find Full Text PDFPhytomedicine
August 2025
Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Background: Stress is a prevalent mental health concern that often emerges in late adolescence or early adulthood. Since 2007, the Food and Drug Administration (FDA) has not approved any novel anxiolytic pharmaceuticals, leading to increased interest in nutritional supplements as alternative therapies for stress management.
Purpose: Building on our previous study, this work aims to investigate the synergistic effects of Theanine (Th) and Walnut Peptide (WP) on stress mitigation and cognitive enhancement.