Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: It is important to distinguish the classification of lung adenocarcinoma. A radiomics model was developed to predict tumor invasiveness using quantitative and qualitative features of pulmonary ground-glass nodules (GGNs) on chest CT.

Materials And Methods: A total of 599 GGNs [including 202 preinvasive lesions and 397 minimally invasive and invasive pulmonary adenocarcinomas (IPAs)] were evaluated using univariate, multivariate, and logistic regression analyses to construct a radiomics model that predicted invasiveness of GGNs. In primary cohort (comprised of patients scanned from August 2012 to July 2016), preinvasive lesions were distinguished from IPAs based on pure or mixed density (PM), lesion shape, lobulated border, and pleural retraction and 35 other quantitative parameters (P <0.05) using univariate analysis. Multivariate analysis showed that PM, lobulated border, pleural retraction, age, and fractal dimension (FD) were significantly different between preinvasive lesions and IPAs. After logistic regression analysis, PM and FD were used to develop a prediction nomogram. The validation cohort was comprised of patients scanned after Jan 2016.

Results: The model showed good discrimination between preinvasive lesions and IPAs with an area under curve (AUC) of 0.76 [95% CI: 0.71 to 0.80] in ROC curve for the primary cohort. The nomogram also demonstrated good discrimination in the validation cohort with an AUC of 0.79 [95% CI: 0.71 to 0.88].

Conclusions: For GGNs, PM, lobulated border, pleural retraction, age, and FD were features discriminating preinvasive lesions from IPAs. The radiomics model based upon PM and FD may predict the invasiveness of pulmonary adenocarcinomas appearing as GGNs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020660PMC
http://dx.doi.org/10.1155/2018/6803971DOI Listing

Publication Analysis

Top Keywords

radiomics model
12
predict tumor
8
tumor invasiveness
8
pulmonary adenocarcinomas
8
pulmonary ground-glass
8
ground-glass nodules
8
preinvasive lesions
8
model predict
4
pulmonary
4
invasiveness pulmonary
4

Similar Publications

Rationale And Objectives: The diagnostic value of traditional imaging methods and radiomics in predicting macrotrabecular-massive hepatocellular carcinoma (MTM HCC) is yet to be ascertained. Therefore, this meta-analysis aims to compare the diagnostic performance of radiomics and conventional imaging techniques for MTM HCC.

Materials And Methods: Comprehensive publications were searched in PubMed, Embase, Web of Science, and Cochrane Library up to 28 February 2025.

View Article and Find Full Text PDF

Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.

Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.

View Article and Find Full Text PDF

Radiomics nomogram from multiparametric magnetic resonance imaging for preoperative prediction of substantial lymphovascular space invasion in endometrial cancer.

Abdom Radiol (NY)

September 2025

Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.

Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.

View Article and Find Full Text PDF

Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.

Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.

View Article and Find Full Text PDF

Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans.

Materials/methods: Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented.

View Article and Find Full Text PDF