98%
921
2 minutes
20
Returning straw to the field provides an important source of fertilizer that can increase soil fertility. However, the rate of straw carbon utilization is low and large amounts of greenhouse gases are emitted due to the high carbon to nitrogen ratio of the straw mass. In this regard, the application of inorganic nitrogen and phosphate fertilizers can control the ratio of elements in the soil, increase the activity of microorganisms and their utilization of elements, and promote the improvement of soil fertility. In this study, straw application conditions were simulated, and inorganic nitrogen fertilizer labeled with N was added to examine the effects of different nutrient fertilizer additions on the transformation and distribution of exogenous nitrogen in the soil, and also the characteristics of the microbial response. The results showed that application of straw increased the contents of ammonia nitrogen and total nitrogen in the soil and soil solution. When both straw and inorganic nitrogen fertilizer were applied, the N-TN in the soil remained at 28 to 33 μg during the 100-day culture phase. In contrast, N-NH increased gradually during the initial 30 days of the culture phase, but subsequently decreased gradually. Application of phosphate increased the contents of N-TN and N-NH in the soil, but decreased the content of N in the soil solution by 28%. The distribution of inorganic nitrogen in the soil showed that the proportion of N in the soil remained at 52%-61%. Addition of phosphate fertilizer increased the distribution ratio of N in the soil by up to 16.5%, whereas the proportion of N in the soil solution decreased from 36% on the fifth day to 30% on the 100 day, thereby the loss amount of N reduced by 1.2-fold. Addition of straw promoted microbial activity and significantly increased the microbial biomass nitrogen (MBN) content of the soil. Addition of inorganic fertilizer further promoted the microbial activity of the soil. After the 100-day culture experiment, the addition of straw, inorganic nitrogen, and phosphate fertilizer increased MBN to between 2.0-fold and 2.2-fold that of the control treatments. Addition of phosphate fertilizer increased the utilization of N by microorganisms, so that the amount of N-MBN was 1.5-fold higher than that of treatments where only straw and nitrogen fertilizer were added. Examination of soil enzyme activity showed that nitrogen fertilizer reduced soil enzyme activity and substrate affinity. When both nitrogen and phosphate fertilizers were added, the enzyme activity was 48.1% higher than that when only straw was added. The findings of this study thus provide a theoretical basis for furthering our understanding on the nitrogen cycle of the paddy soil ecosystem, the improvement of soil fertility, and the reduction of greenhouse gas emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201609219 | DOI Listing |
Magn Reson Lett
May 2025
National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
Organic structure directing agents (OSDAs), such as tetrapropylammonium (TPA) cations, serve as crucial templates for the formation of zeolite frameworks. These organic molecules interact with inorganic species, guiding the assembly of the zeolite structure. In this study, we investigate the complex interplay between boron species and TPA cations during the crystallization of [B, Al]-ZSM-5 zeolites.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine.
The unit cell of the title compound, [Ni(CHNO)]·2CHOH, consists of a neutral complex and two methanol mol-ecules. In the complex, the two tridentate 2-[3-(benzo[][1,3]dioxol-5-yl)-1-1,2,4-triazol-5-yl]-6-(1-pyrazol-1-yl)pyridine ligands coordinate to the central Ni ion through nitro-gen atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere. Neighbouring mol-ecules are linked through weak C-H(pz)⋯π(ph) inter-actions into monoperiodic chains, which are further linked through weak C-H⋯H/N/C inter-actions into diperiodic layers.
View Article and Find Full Text PDFSynth Syst Biotechnol
December 2025
Department of Pharmacy of the Fourth Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
Nitrogen-nitrogen (N-N) bond-forming enzymes are rare but play vital roles in both primary and secondary metabolism. Guided by a nitric oxide synthase (NOS)-based genome mining strategy, we report the discovery and characterization of a new heme-dependent enzyme system that catalyzes intermolecular N-N bond formation. Using both in vivo and in vitro reconstitution approaches, we demonstrated that a protein complex, comprising a heme enzyme and a 2[4Fe-4S] ferredoxin partner, mediates the coupling of the α-amine group of l-aspartate with inorganic nitrogen oxide species, such as nitrite or nitric oxide, to generate hydrazinosuccinic acid, a key biosynthetic precursor in several natural product pathways.
View Article and Find Full Text PDFRSC Adv
August 2025
College of Materials Science and Engineering, Jilin University of Chemical Technology Jilin 132022 PR China
To contribute to the circular and sustainable economy framework, waste tire rubber reclamation by extracting carbon black through pyrolysis and heat treatment and then ingeniously designing it as an electromagnetic wave absorbing (EWA) material is proposed herein. The results showed that the pyrolysis-recycled carbon black (RCB) was heterogeneous with multiple interfaces, making it suitable for EWA application. The RCB was processed at 500 °C-1000 °C to study the changes in the composite and microstructure as well as the EWA properties.
View Article and Find Full Text PDFJ Org Chem
September 2025
Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. Ch
Catalytic C-N coupling reactions are among the most important bond-forming events in synthetic chemistry. Ammonium salts are economic and easily available inorganic compounds, serving as ideal nitrogen sources for nitrogen-containing organic compounds. The use of ammonium salts highlights the synthesis of -containing organic compounds from inorganic compounds.
View Article and Find Full Text PDF