98%
921
2 minutes
20
In this work, the Sr3Al2O5Cl2:Eu2+ and Sr3Al2O5Cl2:Eu2+,Bi3+ phosphors are synthesized by high temperature solid state reactions. Various characterization techniques, such as X-ray diffraction (XRD), Rietveld refinement, photoluminescence (PL) spectroscopy, afterglow spectroscopy, decay curves and thermoluminescence (TL) spectroscopy, are used to examine the phase purity and PL properties of all samples. The XRD results show that all samples belong to the targeted orthorhombic Sr3Al2O5Cl2 phase with the space group of P212121. Upon excitation with UV light, Eu2+-related reddish photoemission and afterglow luminescence are observed in the Sr3Al2O5Cl2:Eu2+ samples. More remarkably, we find that co-doping with Bi3+ ions can enhance the Eu2+-related photoemission and afterglow intensity as well the afterglow duration. For the optimal Sr3Al2O5Cl2:Eu2+,Bi3+ sample, the afterglow luminescence can continue for nearly 550 min in the dark, which is almost 3-fold the duration of the afterglow luminescence of the optimal Sr3Al2O5Cl2:Eu2+ sample. The TL spectra reveal that co-doping with Bi3+ ions can enhance the defect population that corresponds to trap depths at 63 °C, 75 °C and 150 °C, of which the former two trap depths may help to improve the Eu2+-related luminescence in addition to the afterglow property. Due to an increase in the trap concentration, there is an increase in the re-trapping possibility for the released carriers. This work not only achieves enhanced afterglow luminescence of the Sr3Al2O5Cl2:Eu2+ phosphor by co-doping with the non-rare earth (RE) Bi3+ ions, but also provides new insights into the design of RE and non-RE related enhanced afterglow photonic materials for the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp00570b | DOI Listing |
Adv Mater
September 2025
National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of National Development and Reform Commission, Department of Materials Science, School of Materials and Energy, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China.
Multimodal imaging provides comprehensive and precise tools that significantly increase the efficiency and accuracy in clinical decision-making. The integration of superior multimodal imaging capabilities with stimuli-responsive drug release functionalities within a single nanoplatform holds crucial promise for both scientific exploration and clinical translation but remains a formidable challenge in advancing precision medicine. The unique integration of near-infrared emission (λ = 760 nm), multiwavelength-rechargeable afterglow, photostimulated luminescence under 980 nm excitation, and Gd⁺-specific ferromagnetism is highlighted in NaGdTiO:Cr,Sn phosphor.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
School of Chemistry and Chemical Engineering, Ludong University, Yantai 264025, PR China. Electronic address:
UVA persistent luminescent materials have potential applications in energy-saving catalysis and photodynamic therapy. However, the charging time required for existing materials is too long, which restricts their efficiency. We developed novel UVA persistent luminescent phosphors SrMg(PO):Ce and SrMg(PO):Ce,A (A = Li, Na, K) which can be charged rapidly by X-rays.
View Article and Find Full Text PDFBiosensors (Basel)
July 2025
The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China.
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis and therapy. These nanostructures demonstrate significant potential in guiding precision surgical interventions and real-time monitoring of tumor treatment, including photodynamic therapy, photothermal therapy, and immunotherapy.
View Article and Find Full Text PDFLight Sci Appl
August 2025
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
Ultralong organic afterglow materials are being actively explored as attractive candidates for a wide range of applications such as data storage, security inks, emergency lighting, etc., due to their unique long-lived excited state properties and inherent advantages of low cost, appreciable functionality and ease of preparation. In the last three years, much effort has been devoted to achieving efficient ultralong afterglow from organic small molecules, which possess controllable intermolecular interactions and defined energy levels, making them a good platform to suppress the non-radiative decays, hence stabilizing the excitons for efficient afterglow emissions at room temperature.
View Article and Find Full Text PDFSmall
August 2025
College of Physics, Qingdao University, Qingdao, 266071, China.
Single-component multimodal luminescent materials, particularly those exhibiting dynamic fluorescence properties, have garnered significant attention in the field of high-end information encryption. However, achieving single-component multimodal luminescence, including dynamic fluorescence, in halide perovskites remains a challenge. In this study, a Pb/Mn co-doping strategy is proposed to achieve multiple optical responses in CsCdCl perovskites, including crystal coloration, dynamic fluorescence switching, thermochromism, and long afterglow.
View Article and Find Full Text PDF